Adaptive Aggregate Transmission for Device-to-Multi-Device Aided Cooperative NOMA Networks

Yao Xu, Jie Tang, Senior Member, IEEE, Bo Li, Member, IEEE, Nan Zhao, Senior Member, IEEE, Dusit Niyato, Fellow, IEEE, Kai-Kit Wong, Fellow, IEEE

Abstract—The integration of device-to-device (D2D) communications with cooperative non-orthogonal multiple access (NOMA) can achieve superior spectral efficiency. However, the mutual interference caused by D2D communications may prevent NOMA from divering its high spectral efficiency advantage. Meanwhile, the low adaptability of the fixed transmission strategy can decrease the reliability of the cell-edge user (CEU). To further improve the spectral efficiency, we investigate a deviceto-multi-device (D2MD) assisted cooperative NOMA system, where two cell-center users (CCUs) and one CEU are paired as a D2MD cluster. Specifically, the base station directly serves the two CCUs while communicating with the CEU via one CCU. Moreover, we propose an adaptive aggregate transmission scheme using dynamic superposition coding, pre-designing the decoding orders and prior information cancellation for the D2MD assisted cooperative NOMA system to enhance the reliability of the CEU. We provide the closed-form expressions for the outage probability, diversity order, outage throughput, ergodic sum capacity, average spectral efficiency, and spectral efficiency scaling over Nakagami-m fading channels under perfect and imperfect successive interference cancellation. The numerical results validate the correctness of the analytical derivations and the effectiveness of the proposed scheme.

Index Terms—Cooperative relaying, non-orthogonal multiple access, outage probability, spectral efficiency, imperfect successive interference cancellation.

I. INTRODUCTION

As a significant carrier of future communication services, the Internet of things (IoT) supported by intelligent terminal devices possesses extensive and diversified applications, such as industrial automation, massive machine-type communications and smart city [1], [2]. The high service

Manuscript received August 12, 2021; revised October 29, 2021; accepted December 16, 2021. This work was supported by the National Natural Science Foundation of China under Grants 62171154, 61871065 and 61901137. (Corresponding author: Bo Li.)

Yao Xu and Bo Li are with the Communication Research Center, Harbin Institute of Technology, Harbin 150001, China (email: xuyao_hit@sina.com; libo1983@hit.edu.cn).

Jie Tang is with the School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510641, China (e-mail: eeitang@scut.edu.cn).

Nan Zhao is with the School of Information and Communication Engineering, Dalian University of Technology, Dalian 116024, China (e-mail: zhaonan@dlut.edu.cn).

Dusit Niyato is with the School of Computer Science and Engineering, Nanyang Technological University, 639798, Singapore. (e-mail: dniyato@ntu.edu.sg).

Kai-Kit Wong is with the Department of Electronic and Electrical Engineering, University College London, London WC1E 6BT, U.K. (e-mail:kai-kit.wong@ucl.ac.uk).

quality required by the applications above imposes many severe challenges to the performance of future wireless networks, including ultra-high device access density and ultra-high spectral efficiency (SE) [3], [4]. Recently, non-orthogonal multiple access (NOMA) adopting successive interference cancellation (SIC) and superposition coding has raised considerable attention because it can achieve remarkable SE [5], [6]. Unlike orthogonal multiple access (OMA), NOMA actively introduces inter-user interference through resource sharing, and it performs SIC at the receiver to realize successful decoding for enhancing the overall system SE and providing massive connectivity [7], [8].

Due to the attractive SE superiority of NOMA, some researchers have integrated device-to-device (D2D) communications with NOMA to obtain superior performance gain [9]-[15]. Specifically, resource allocation optimization is a promising research direction for D2D-aided NOMA systems. In [9], Zhao et al. jointly optimized the subchannel and power allocation for a NOMA enhanced D2D system, where the D2D transmitter can use NOMA to communicate with multiple D2D receivers. In [10], Pei et al. proposed an iterative algorithm with low complexity to maximize the energy efficiency for D2D underlaying energy harvesting-based NOMA networks via the joint optimization of power control and time allocation. Pan et al. in [11] maximized the sum rate of D2D users for D2D underlaying NOMA-based systems by solving the channel assignment and power control problem. Zheng et al. in [12] investigated the power allocation and user clustering for D2D underlaid uplink NOMA networks. In [13], Dai et al. discussed the interlay and underlay modes for D2Dassisted NOMA networks and jointly designed the resource management and mode selection. In [14], a two-stage game approach was proposed by Li et al. to maximize the unilateral energy efficiency for D2D-assisted uplink NOMA systems. Moreover, Sun et al. in [15] proposed a traffic offloading scheme for D2D-enabled NOMA networks and maximized the capacity achieved by the D2D network using the optimization of power control and subchannel assignment.

A. Related Work

To simultaneously acquire higher SE and broader coverage, cooperative relaying has also been applied to NOMA-based networks [16]–[28]. In [16], Ding *et al.* proposed a cooperative NOMA scheme using user prior information and designed a

user pairing strategy to reduce the system complexity. Based on this work, the influence of relay selection on cooperative NOMA was further investigated in [17]. Liu et al. applied simultaneous wireless information and power transfer (SWIPT) to cooperative NOMA in [18], where near users perform as energy harvesting relays to assist far users. A dynamic cooperative NOMA scheme was characterized for the multicast cognitive radio network by Lv et al. in [19] to attain better outage performance. Cao et al. analyzed the secrecy performance of the cooperative NOMA system with a multiantenna full-duplex relay in [20]. In [21], Zhong et al. proposed a full-duplex relay-assisted cooperative NOMA scheme and validated the performance gain achieved by the proposed scheme over the half-duplex relay aided cooperative NOMA scheme. Si et al. studied a cooperative NOMA scheme using spatial modulation and SWIPT in [22], where the stronger user with energy harvesting and full-duplex characteristics helps the weaker user. In [23], joint beamforming and power-splitting control was proposed by Xu et al. to maximize the achievable data rate of the strong user for multiple-input single-output (MISO) and SWIPT-based cooperative NOMA systems. Qian et al. minimized the overall-latency of the cellular aided mobile edge computing system in [24], where spectrum sharing and NOMA are exploited to realize the cooperation between the cellular user and the edge-computing user. In [25], a joint power and time optimization was presented by Bae et al. to minimize the system outage probability of cooperative NOMA with a two-way relay. Moreover, Yuan et al. proposed an iterative algorithm using a successive convex approximation in [26] to optimize the system energy efficiency for fullduplex-based cooperative SWIPT NOMA systems. In [27], Zhou et al. investigated the beamforming design problems for cooperative MISO-NOMA cognitive radio networks using SWIPT to improve the security of the primary network. In [28], Wu et al. proposed the vertical decomposition and a layered-algorithm to maximize the overall throughput for the NOMA-based cooperative relaying system.

Although NOMA can improve the SE of the cooperative relaying system, the cooperative procedure inevitably suppresses the SE superiority of NOMA. Therefore, many research efforts have been devoted to combining D2D communications and cooperative NOMA to increase the SE and device access density [29]-[34]. In [29], Zhang et al. analyzed the outage probability for the proposed D2D-assisted cooperative NOMA scheme, where the near user acts as a full-duplex relay to help the far user. Kim et al. in [30] considered a D2Daided cooperative NOMA system using the dedicated relay and presented a power allocation scheme to maximize the capacity scaling. In [31], Xu et al. evaluated the outage performance and outage throughput for the D2D aided uplink cooperative NOMA system. In [32], Li et al. proposed a D2D content sharing strategy for the cooperative NOMA system considering social ties and studied the performance in terms of the social-aware rates. Moreover, Kader et al. in [33] proposed a D2D-aided uplink cooperative NOMA system, where the near users can directly communicate with the base station (BS), and the far user connects with the BS with the aid of one near user. In [34], Zou et al. applied the D2D technology to

a downlink coordinated direct and relay transmission (CDRT) system and validated the advantage of ergodic sum capacity over the OMA scheme.

B. Motivation and Contributions

The use of D2D communications in cooperative NOMA can further improve the system SE. However, the introduction of D2D may cause mutual interference between D2D users and cellular users, and thus indirectly burying the high SE potential of NOMA. Meanwhile, in the D2D-assisted cooperative NOMA system, the low adaptability caused by the fixed transmission strategy can decrease the reliability of the celledge user (CEU) and system throughput. Currently, the existing works integrate D2D communications with cooperative NOMA and design a fixed transmission strategy to enhance the SE, but they ignore the measurement of the reliability of the CEU. Moreover, the existing studies only consider a simple channel model (i.e., Rayleigh fading channels) and perfect SIC, which is not realistic in practical applications. Motivated by these observations, considering Nakagami-m fading channels and imperfect SIC, we investigate a device-to-multidevice (D2MD) assisted cooperative NOMA system. Besides, we propose an adaptive aggregate transmission scheme using dynamic superposition coding, pre-designing the decoding orders and prior information cancellation. It is worth noting that D2MD is a one-to-many D2D communication type, and one D2D transmitter can simultaneously broadcast data to several D2D receivers in a D2MD cluster [35]. The proposed system model can be treated as Scenario 2B in [35], which is a critical 3GPP D2D communication scenario. Moreover, the proposed scheme can be applied to other practical application scenarios such as the general cellular network and light IoT network.

The contributions of this paper are summarized as follows.

- The existing D2D-assisted cooperative NOMA schemes using a fixed transmission strategy may reduce the reliability of the CEU and cannot provide sufficient design space to improve SE. To cope with this issue, we first present a D2MD assisted downlink cooperative NOMA system consisting of one BS, one CEU and two cell-center users (CCUs), where these three users are paired as a D2MD cluster. Specifically, the BS can directly communicate with the CCUs while connecting with the CEU via one CCU.
- To further enhance the SE and the reliability of the CEU, we propose an adaptive aggregate transmission scheme by adopting the prior information cancellation and designing dynamic superposition coding and decoding orders. The proposed scheme can be straightforwardly extended to the massive-user or multi-cell scenarios by using user pairing and hybrid multiple access.
- We characterize the performance of the proposed scheme in terms of communication reliability and effectiveness. Specifically, the closed-form expressions for the outage probability, outage throughput, ergodic sum capacity, and average SE are derived over Nakagami-m fading channels with imperfect SIC.

- To gain more insights, we analyze the asymptotic performance for the outage probability and average SE in the high transmit power region. Based on this, the diversity order and SE scaling achieved by the proposed scheme are further investigated.
- Compared with the conventional D2D-assisted CDRT (D-CDRT) scheme, the proposed scheme can transmit more data streams with the same amount of time resource. The proposed scheme can achieve better outage performance of the CEU, outage throughput and average SE under perfect and imperfect SIC. The SE superiority of the proposed scheme over OMA comparisons with perfect SIC is validated through simulations. Moreover, we study the impact of some practical factors, including fading parameters, distance settings and imperfect SIC on the average SE.

C. Organization

The rest of the paper is organized as follows. Section II introduces the system model of D2MD-assisted cooperative NOMA. Section III presents the design of the proposed adaptive aggregate scheme. In Section IV, the closed-form expressions for the outage probability, outage throughput, diversity order, ergodic sum capacity, average SE, and SE scaling are derived. Numerical results and conclusions are provided in Section V and Section VI, respectively.

Notations: In this paper, $F_Z(z)$ and $f_Z(z)$ represent the cumulative distribution function (CDF) and the probability density function (PDF) of the variable Z, respectively; the meaning of the operator $\mathbb{E}(\cdot)$ is to obtain the expectation value; the operation $\Xi'\Rightarrow\Xi(z\to z')$ denotes that Ξ' can be obtained by replacing z with z'; " \to " means "approaching" and " \sim " represents "be proportional to".

II. SYSTEM MODEL

We consider a downlink D2MD-enabled cooperative NOMA system shown in Fig. 1, where the BS can directly communicate with two CCUs (i.e., U_1 and U_2) while serving a CEU (i.e., U_3) via a decode-and-forward relaying user (i.e., U_2) due to the significant obstacle between the BS and U_3^{-1} . Specifically, the system model consists of a D2MD cluster, in which U_2 is a potential D2D transmitter, and U_1 and U_3 are within the proximity detection region of U_2 . All nodes have a single antenna and operate in half-duplex mode. Hereafter, let subscripts s, 1, 2, and 3 denote the BS, U_1 , U_2 and U_3 , respectively. Assume that each channel link is subject to independent Nakagami-m block fading, and all the receiver nodes suffer from the additive white Gaussian noise with zero mean and variance N_0 . The block fading means the channel changes over different blocks while remaining constant within

¹Although a three-user system is investigated in this paper, the proposed scheme can be directly applied to a multi-user system (i.e., more than three users) by using user pairing. For instance, the existing user pairing methods in [18] and [36] can group users. Then the conventional orthogonal multiple access is used to distinguish different user pairs, and the proposed scheme is performed in each group [36]. Using user pairing can effectively reduce the system complexity and inter-user interference for NOMA-based systems [37]. Besides, the analysis can also be directly extended to a multi-user system by using the random near user and random far user selection method in [18].

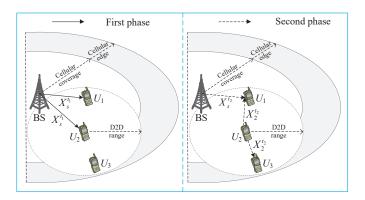


Fig. 1. System model. An illustration of the proposed adaptive aggregate transmission scheme for the D2MD assisted cooperative NOMA system with one BS, two CCUs and one CEU.

one block. To reduce the system complexity, we can easily extend the proposed system model to the massive-user or multi-cell scenarios via the existing user pairing and hybrid multiple access in [36].

The channel coefficient, channel gain and fading parameter between x and y are denoted by h_{xy} , λ_{xy} and m_{xy} , respectively, where $x,y\in\{s,1,2,3\}, x\neq y$. The expectation of λ_{xy} is $\Omega_{xy}=G_0d_{xy}^{-\alpha_0}$, where α_0 and G_0 represent the path loss exponent and the channel gain for reference distance (i.e., 1 m), respectively, and d_{xy} denotes the distance between x and y. In this paper, we assume that $d_{s1}< d_{s2}$ and $d_{23}< d_{21}$, which may not satisfy $\lambda_{s1}>\lambda_{s2}$ and $\lambda_{23}>\lambda_{21}$. Note that the proposed scheme can be directly used in practical application if a feasibility-check procedure is performed to ensure the above distance conditions. Moreover, the proposed scheme can also be easily extended to other distance assumptions via downlink NOMA.

III. ADAPTIVE AGGREGATE TRANSMISSION SCHEME

To offload the data traffic and improve the SE, we propose an adaptive transmission scheme for the D2MD-enabled cooperative NOMA system. One transmission block is divided into two consecutive and equal phases in the proposed scheme to complete downlink NOMA and D2D multicast transmissions, as detailed below.

A. First Phase

In the first phase (i.e., t_1), the BS broadcasts the signal $X_s^{t_1} = \sum_{i=1}^3 \sqrt{a_i P_s} x_i$ to U_1 and U_2 using power-domain superposition coding, where P_s is the transmit power of the BS, the signal x_i contains the required information for U_i , $i \in \{1,2,3\}$, and a_i represents the corresponding power allocation coefficient. Since the condition $d_{s1} < d_{s2}$ holds and U_3 is a CEU, the power allocation coefficient should satisfy $\sum_{i=1}^3 a_i = 1$ and $a_3 > a_2 > a_1$. The received signals at U_j , $j \in \{1,2\}$, can be written as

$$Y_i^{t_1} = h_{sj} X_s^{t_1} + n_i^{t_1}, (1)$$

where $n_i^{t_k} \sim \mathcal{CN}(0, N_0)$, $k \in \{1, 2\}$, denotes the complex additive white Gaussian noise at the receiver U_i in t_k .

The CCU U_2 first decodes x_3 by treating x_1 and x_2 as noise, and then cancels x_3 and performs SIC to decode x_2 by treating x_1 as noise. Note that, based on downlink NOMA, U_2 does not need to decode x_1 in the first phase. Meanwhile, the CCU U_1 uses SIC to decode x_3 , x_2 and x_1 sequentially. Therefore, the received signal-to-interference-and-noise ratios at U_i , $j \in \{1,2\}$, for decoding x_3 and x_2 in t_1 can be respectively expressed as

$$\gamma_{j,x_3}^{t_1} = \frac{\lambda_{sj} a_3 \rho_s}{\lambda_{sj} (a_1 + a_2) \rho_s + 1},\tag{2}$$

$$\gamma_{j,x_3}^{t_1} = \frac{\lambda_{sj} a_3 \rho_s}{\lambda_{sj} (a_1 + a_2) \rho_s + 1}, \qquad (2)$$

$$\gamma_{j,x_2}^{t_1} = \frac{\lambda_{sj} a_2 \rho_s}{\lambda_{sj} (a_1 + \kappa_{j,1}^{t_1} a_3) \rho_s + 1}, \qquad (3)$$

where the transmit signal-to-noise ratio (SNR) ρ_s is denoted as $\rho_s=\frac{P_s}{N_0}$, and the fractional error factor $\kappa_{j,1}^{t_1}$ represents the residual interference levels for imperfect SIC. Specifically, the value range of the fractional error factor is from zero to one. The factor value equals zero means that perfect SIC is performed, while the factor value equals one represents that no SIC is performed. Moreover, the received signal-tointerference-and-noise ratio at U_1 for decoding x_1 in t_1 can be expressed as

$$\gamma_{1,x_1}^{t_1} = \frac{\lambda_{s1} a_1 \rho_s}{\lambda_{s1} \left(\kappa_{1,2}^{t_1} a_2 + \kappa_{1,3}^{t_1} a_3\right) \rho_s + 1},\tag{4}$$

where $\kappa_{1,2}^{t_1}$ and $\kappa_{1,3}^{t_1}$ are the fractional error factors.

B. Second Phase

Since U_1 and U_2 cannot always decode x_3 successfully in the first phase, we propose an adaptive transmission scheme to improve the SE. Moreover, the predetermined decoding order is designed to reduce the decoding complexity while guaranteeing the reliability of the CEU.

Let the binary numbers A_1 and A_2 represent the decoding results for x_3 at U_1 and U_2 in t_1 , respectively, where $A_i = 0$ and $A_i = 1, j \in \{1, 2\}$, denote failed decoding and successful decoding, respectively. A two-bit binary number $A = A_1 A_2$ indicates the combination of two outage events. For instance, "A = 3 (decimal form)" denotes the event that both U_1 and U_2 can decode x_3 successfully in the first phase.

During the second phase (i.e., t_2), the BS transmits $X_s^{t_2} =$ $\sqrt{P_s}x_1'$ to U_1 , where x_1' is a new downlink signal required by U_1 . Meanwhile, U_2 attempts to forward x_3 to U_3 as a decode-and-forward relay while acting as a D2D transmitter to communicate with U_1 and U_3 via NOMA-based D2D multicast communication. Specifically, the user U_2 broadcasts a superposed signal $X_2^{t_2}$ for case A, and $X_2^{t_2}$ can be expressed as

$$X_2^{t_2} = \sqrt{b_1^A P_u} x_{d_1} + \sqrt{b_2^A P_u} x_{d_3} + \sqrt{b_3^A P_u} x_3, \qquad (5)$$

where x_{d_1} and x_{d_3} are the desired D2D signal for U_1 and U_3 , respectively, P_u is the transmit power of U_2 , and b_i^A , $i \in \{1,2,3\}$ is the power allocation coefficient with $\sum_{i=1}^3 b_i^A = 1$. Due to $d_{23} < d_{21}$ and the cooperative transmission of x_3 , the power allocation coefficients should satisfy $1 > b_1^A >$ $b_3^A > b_2^A > 0$ via downlink NOMA when U_2 can decode x_3 successfully in the first phase (i.e. A=1,3). Conversely,

if U_2 cannot decode x_3 in the first phase (i.e., A = 0, 2), the power allocation coefficient b_3^A in (5) should be set to $b_3^A = 0$. Meanwhile, based on downlink NOMA, the power allocation coefficients b_1^A and b_2^A should satisfy $1 > b_1^A > b_2^A > 0$. Therefore, the received signals at U_1 and U_3 in the second phase can be respectively expressed as

$$Y_{1,A}^{t_{2}} = h_{21} \left(\sqrt{b_{1}^{A} P_{u}} x_{d_{1}} + \sqrt{b_{2}^{A} P_{u}} x_{d_{3}} + \sqrt{\varpi^{A} b_{3}^{A} P_{u}} x_{3} \right)$$

$$+ h_{s1} \sqrt{P_{s}} x_{1}' + n_{1}^{t_{2}},$$

$$Y_{3,A}^{t_{2}} = h_{23} \left(\sqrt{b_{1}^{A} P_{u}} x_{d_{1}} + \sqrt{b_{2}^{A} P_{u}} x_{d_{3}} + \sqrt{b_{3}^{A} P_{u}} x_{3} \right)$$

$$+ n_{3}^{t_{2}},$$

$$(7)$$

where the flag value $\varpi^A \in \{0,1\}$ indicates whether the interference term $\sqrt{b_3^A P_u} x_3$ in (6) exists.

When both U_1 and U_2 can decode x_3 successfully in the first phase (i.e., A=3), U_1 can estimate $\sqrt{b_3^A P_u}$ in the second phase and use the decoded x_3 to cancel the interference $\sqrt{b_3^A P_u} x_3$ in (6). Therefore, the flag value ϖ^A should satisfy $\varpi^0 = \varpi^2 = \varpi^3 = 0$ and $\varpi^1 = 1$.

The received signals in (6) and (7) contain multiple signal components, which means that the diversity and uncertainty of decoding orders at U_1 and U_3 in the second phase may cause high complexity in practical implementation. To cope with this issue, we propose a predetermined decoding order strategy via power allocation coefficient design. Specifically, the D2D transmission is typically over the short distance, and thus the condition $\Omega_{s1} < \Omega_{21}$ is more general than $\Omega_{s1} > \Omega_{21}$ in practice. In the proposed strategy, U_2 first attains statistical channel information Ω_{s1} and Ω_{s1} by using a two-step channel estimation [37]. Then, the power allocation coefficient is designed as $b_1^A > \frac{\Omega_{s1}}{\Omega_{21}\alpha} > \max\{b_2^A, b_3^A\}$ at U_2 , where $\alpha \stackrel{\Delta}{=} \frac{P_u}{P_o}$ is a scale factor. Therefore, U_1 can use SIC to decode x_{d_1} and x'_1 sequentially by treating the non-decoded signals as noise, while the decoding order at U_3 in the second phase is pre-determined as x_{d_1} , x_3 and x_{d_3} . The received signal-to-interference-and-noise ratios for U_1 to decode x_{d_1} and x'_1 in case A can be respectively expressed as

$$\gamma_{1,x_{d_1}}^{t_2,A} = \frac{\lambda_{21}b_1^A\alpha\rho_s}{\lambda_{s1}\rho_s + \lambda_{21}\left(b_2^A + \varpi^Ab_3^A\right)\alpha\rho_s + 1},\tag{8}$$

$$\gamma_{1,x_1'}^{t_2,A} = \frac{\lambda_{s1}\rho_s}{\lambda_{21} \left(\kappa_{1,1}^{t_2,A} b_1^A + b_2^A + \varpi^A b_3^A\right) \alpha \rho_s + 1}, \quad (9)$$

where $\kappa_{1,1}^{t_2,A}$ is a fractional error factor.

Moreover, the received signal-to-interference-and-noise ratios for U_3 to decode x_{d_1} , x_3 and x_{d_3} in case A can be expressed as

$$\gamma_{3,x_{d_1}}^{t_2,A} = \frac{\lambda_{23} b_1^A \alpha \rho_s}{\lambda_{23} \left(b_2^A + b_3^A\right) \alpha \rho_s + 1},\tag{10}$$

$$\gamma_{3,x_3}^{t_2,A} = \frac{\lambda_{23} b_3^A \alpha \rho_s}{\lambda_{23} \left(\kappa_{3,1}^{t_2,A} b_1^A + b_2^A\right) \alpha \rho_s + 1},\tag{11}$$

$$\gamma_{3,x_{d_3}}^{t_2,A} = \frac{\lambda_{23} b_2^A \alpha \rho_s}{\lambda_{23} \left(\kappa_{3,2}^{t_2,A} b_1^A + \kappa_{3,3}^{t_2,A} b_3^A\right) \alpha \rho_s + 1},$$
 (12)

where $\kappa_{3,1}^{t_2,A}$, $\kappa_{3,2}^{t_2,A}$ and $\kappa_{3,3}^{t_2,A}$ represent fractional error factors. Based on (4), (9) and (12), the achievable rate for the data streams of x_1 , x_1' and x_{d_3} can be respectively expressed as

$$C_{x_1} = \frac{1}{2} \log_2 \left(1 + \gamma_{1,x_1}^{t_1} \right),$$
 (13)

$$C_{x_1'}^A = \frac{1}{2} \log_2 \left(1 + \gamma_{1,x_1'}^{t_2,A} \right),$$
 (14)

$$C_{x_{d_3}}^A = \frac{1}{2} \log_2 \left(1 + \gamma_{3, x_{d_3}}^{t_2, A} \right). \tag{15}$$

To perform SIC, U_1 needs to decode x_2 in the first phase and U_3 must decode x_{d_1} during the second phase. Therefore, based on (3), (8) and (10), the achievable rate for the data streams of x_2 and x_{d_1} can be respectively expressed as

$$C_{x_2} = \frac{1}{2} \log_2 \left(1 + \min \left\{ \gamma_{1,x_2}^{t_1}, \gamma_{2,x_2}^{t_1} \right\} \right), \tag{16}$$

$$C_{x_{d_1}}^A = \frac{1}{2} \log_2 \left(1 + \min \left\{ \gamma_{1, x_{d_1}}^{t_2, A}, \gamma_{3, x_{d_1}}^{t_2, A} \right\} \right). \tag{17}$$

The first-link and second-link achievable rates of x_3 at U_2 and U_3 are $\frac{1}{2} \mathrm{log}_2 \left(1 + \gamma_{2,x_3}^{t_1}\right)$ and $\frac{1}{2} \mathrm{log}_2 \left(1 + \gamma_{3,x_3}^{t_2,A}\right)$, respectively. Meanwhile, the achievable rate of x_3 at U_1 in the first phase is $\frac{1}{2} \mathrm{log}_2 \left(1 + \gamma_{1,x_3}^{t_1}\right)$. The achievable rate of cooperative decode-and-forward relaying is dominated by the worst link, and U_1 must decode x_3 for SIC in the first phase [38]. Therefore, using [38, eq. (5)], (2) and (11), we can express the achievable rate for x_3 as

$$C_{x_3}^A = \frac{1}{2} \log_2 \left(1 + \min \left\{ \gamma_{1,x_3}^{t_1}, \gamma_{2,x_3}^{t_1}, \gamma_{3,x_3}^{t_2,A} \right\} \right). \tag{18}$$

IV. PERFORMANCE ANALYSIS

This section investigates the performance for the proposed scheme over Nakagami-m fading channels. Due to the adaptive characteristics of the proposed scheme, the performance analysis is quite difficult. In view of this, we use classification discussion and approximation method to obtain closed-form of various metrics for proving the effectiveness of the proposed scheme and the scarcity of analysis. Specifically, the closed-form expressions for the outage probability and outage throughput of the proposed scheme are derived when the target data rates are fixed beforehand to satisfy the quality of service. Conversely, we use the ergodic sum capacity and average SE to evaluate the performance of the proposed scheme if the target rates change dynamically according to the channel qualities. Similar to [8], the following derivations can provide guidance for system optimization, such as SE maximization.

A. Outage Probability and Outage Throughput

The event that the receiver node y can decode the signal \bar{y} successfully in the first phase is denoted by $E_{y,\bar{y}}^{t_1} \stackrel{\Delta}{=} \left\{ \frac{1}{2} \log(1 + \gamma_{y,\bar{y}}^{t_1}) > R_{\bar{y}} \right\}$. Similarly, the inequality $E_{z,\bar{z}}^{t_2,A} \stackrel{\Delta}{=} \left\{ \frac{1}{2} \log(1 + \gamma_{z,\bar{z}}^{t_2,A}) > R_{\bar{z}} \right\}$ represents that the signal \bar{z} can be decoded at the receiver node z in t_2 for case A, where $y \in \{1,2\}, \ \bar{y} \in \{x_1,x_2,x_3\}, \ z \in \{2,3\}, \ \bar{z} \in \{x_3,x_1',x_{d_1},x_{d_3}\},$ and $R_{\bar{y}}$ and $R_{\bar{z}}$ are the target data rates of \bar{y} and \bar{z} , respectively. The complement sets of $E_{y,\bar{y}}^{t_1}$ and $E_{z,\bar{z}}^{t_2,A}$ are denoted as $\tilde{E}_{y,\bar{y}}^{t_1}$

and $\tilde{E}_{z,\bar{z}}^{t_2,A}$, respectively. Moreover, let $\varphi_{\bar{y}} \stackrel{\Delta}{=} 2^{R_{\bar{y}}} - 1$ and $\varphi_{\bar{z}} \stackrel{\Delta}{=} 2^{R_{\bar{z}}} - 1$.

Before decoding x_1 , U_1 must sequentially decode x_3 and x_2 first. Therefore, we can use (2), (3) and (4) to calculate the outage probability for U_1 to decode x_1 in the first phase as

$$\begin{split} P_{1,\text{out}}^{t_1,x_1} &= 1 - \Pr\left(E_{1,x_3}^{t_1} \cap E_{1,x_2}^{t_1} \cap E_{1,x_1}^{t_1}\right) \\ &= 1 - \Pr\left(\lambda_{s1} > \max\{\phi_1, \phi_2, \phi_3\}\right) \\ &= F_{\lambda_{s1}}\left(\tilde{\phi}_1\right), \end{split} \tag{19}$$

where $\tilde{\phi}_1 = \max\{\phi_1,\phi_{2,1},\phi_3\}, \quad \phi_{2,j} = \frac{\varphi_{x_2}}{\rho_s(a_2-(a_1+\kappa_{j,1}^{t_1}a_3)\varphi_{x_2})}$ and $\phi_3 = \frac{\varphi_{x_3}}{\rho_s(a_3-(a_1+a_2)\varphi_{x_3})}.$ Note that the conditions $\phi_1>0,\ \phi_{2,j}>0$ and $\phi_3>0$ should be guaranteed via power allocation coefficient design to implement NOMA successfully in practice. Moreover, $F_{\lambda_{s1}}(\cdot)$ denotes the CDF of the variable λ_{s1} with Gamma distribution. Specifically, if the channel coefficient h_{xy} follows Nakagami-m distribution, the CDF of the channel gain λ_{xy} exhibiting Gamma distribution can be written as

$$F_{\lambda_{xy}}(z) = 1 - \exp\left(-\frac{zm_{xy}}{\Omega_{xy}}\right) \sum_{i=0}^{m_{xy}-1} \frac{1}{i!} \left(\frac{zm_{xy}}{\Omega_{xy}}\right)^i. \quad (20)$$

Since U_2 must adopt SIC to decode x_2 after decoding x_3 , we can use (2) and (3) to calculate the outage probability for U_2 to decode x_2 during the first phase as

$$P_{2,\text{out}}^{t_1,x_2} = 1 - \Pr\left(E_{2,x_3}^{t_1} \cap E_{2,x_2}^{t_1}\right)$$

$$= 1 - \Pr\left(\lambda_{s2} > \max\left\{\phi_{2,2}, \phi_3\right\}\right)$$

$$= F_{\lambda_{s2}}\left(\tilde{\phi}_2\right), \tag{21}$$

where $\phi_2 = \max\{\phi_{2,2}, \phi_3\}.$

Based on the proposed scheme, U_3 may decode x_3 successfully in two cases (i.e., A=1,3). Therefore, the outage probability for U_3 to decode x_3 in the second phase can be expressed as

$$P_{3,\text{out}}^{t_2,x_3} = 1 - \sum_{\bar{k}=1,3} \mathbb{P}_{3,\bar{k}}^{t_2,x_3},\tag{22}$$

 $\begin{array}{l} \text{where } \mathbb{P}^{t_2,x_3}_{3,\bar{k}} = \Pr(A=\bar{k}) \Pr(E^{t_2,\bar{k}}_{3,x_{d_1}} \cap E^{t_2,\bar{k}}_{3,x_3} | A=\bar{k}). \\ \text{Using } \gamma^{t_1}_{1,x_3}, \gamma^{t_1}_{2,x_3}, \gamma^{t_2,1}_{3,x_{d_1}} \text{ and } \gamma^{t_2,1}_{3,x_3}, \text{ we can calculate } \mathbb{P}^{t_2,x_3}_{3,1} \end{array}$

$$\mathbb{P}_{3,1}^{t_2,x_3} = \Pr\left(\lambda_{s1} < \phi_3, \lambda_{s2} > \phi_3, \lambda_{23} > \tilde{\phi}_3^1\right)
= F_{\lambda_{s1}}(\phi_3) \left(1 - F_{\lambda_{s2}}(\phi_3)\right) \left(1 - F_{\lambda_{23}}\left(\tilde{\phi}_3^1\right)\right), (23)$$

where
$$\tilde{\phi}_3^A = \max\left\{\phi_4^A,\phi_6^A\right\}$$
, $\phi_4^A = \frac{\varphi_{x_{d_1}}}{\alpha\rho_s\left(b_1^A-\left(b_2^A+b_3^A\right)\varphi_{x_{d_1}}\right)}$ and $\phi_6^A = \frac{\varphi_{x_3}}{\alpha\rho_s\left(b_3^A-\left(\kappa_{3,1}^{t_2,A}b_1^A+b_2^A\right)\varphi_{x_3}\right)}$. The inequalities $\phi_4^A >$

0 and $\phi_6^A > 0$ should be satisfied to apply NOMA successfully. Otherwise, the outage probability for U_3 to decode x_3 is always one.

Similarly, based on $\gamma_{1,x_3}^{t_1}$, $\gamma_{2,x_3}^{t_1}$, $\gamma_{3,x_{d_1}}^{t_2,3}$ and $\gamma_{3,x_3}^{t_2,3}$, the nonoutage probability $\mathbb{P}_{3,3}^{t_2,x_3}$ can be calculated as

$$\mathbb{P}_{3,3}^{t_{2},x_{3}} = \Pr\left(\lambda_{s1} > \phi_{3}, \lambda_{s2} > \phi_{3}, \lambda_{23} > \tilde{\phi}_{3}^{3}\right)$$

$$= (1 - F_{\lambda_{s1}}(\phi_{3})) (1 - F_{\lambda_{s2}}(\phi_{3})) \left(1 - F_{\lambda_{23}}(\tilde{\phi}_{3}^{3})\right). (24)$$

Substituting (23) and (24) into (22), we obtain $P_{3,\text{out}}^{t_2,x_3}$

According to the proposed scheme, U_1 may decode x_{d_1} successfully in four cases (i.e., A = 0, 1, 2, 3). Therefore, the outage probability for U_1 to decode x_{d_1} during the second phase can be expressed as

$$P_{1,\text{out}}^{t_2,x_{d_1}} = 1 - \sum_{\bar{k}=0}^{3} \mathbb{P}_{1,\bar{k}}^{t_2,x_{d_1}},\tag{25}$$

where $\mathbb{P}_{1,\bar{k}}^{t_2,x_{d_1}}=\Pr(A=\bar{k})\Pr(E_{1,x_{d_1}}^{t_2,\bar{k}}|A=\bar{k}).$ For simplicity, applying [39, eq. (3.351.1)] to the following integral, we define

$$\mathcal{L}_{1}(\eta^{*}, \eta, \mu) \stackrel{\Delta}{=} \int_{0}^{\eta^{*}} z^{\eta} \exp(-\mu z) dz$$

$$= \frac{\eta!}{\mu^{\eta+1}} - \exp(-\eta^{*}\mu) \sum_{\varepsilon_{1}=0}^{\eta} \frac{\eta! \eta^{*\varepsilon_{1}}}{\varepsilon_{1}! \mu^{\eta-\varepsilon_{1}+1}}. \quad (26)$$

Based on (20) and (26), we can use $\gamma_{1,x_3}^{t_1}$, $\gamma_{2,x_3}^{t_1}$, $\gamma_{1,x_{d_1}}^{t_2,0}$ and the binomial expansion of $(x+\rho_s^{-1})^i=\sum_{i_1=0}^i\binom{i}{i_1}\rho_s^{i_1-i}x^{i_1}$ to calculate $\mathbb{P}_{1,0}^{t_2,x_{d_1}}$ as

$$\mathbb{P}_{1,0}^{t_2,x_{d_1}} = \Pr\left(\lambda_{s1} < \phi_3, \lambda_{s2} < \phi_3, \lambda_{21} > \lambda_{s1}\rho_s\phi_5^0 + \phi_5^0\right)
= \mathcal{L}_1\left(\phi_3, i_1 + m_{s1} - 1, \frac{m_{s1}}{\Omega_{s1}} + \frac{m_{21}\rho_s\phi_5^0}{\Omega_{21}}\right)
\times F_{\lambda_{s2}}\left(\phi_3\right) \Delta_i^0,$$
(27)

where

$$\begin{split} \phi_5^A = & \frac{\varphi_{x_{d_1}}}{\alpha \rho_s (b_1^A - (b_2^A + \varpi^A b_3^A) \varphi_{x_{d_1}})}, \\ \Delta_i^A = & \frac{m_{s1}^{m_{s1}}}{\Omega_{s1}^{m_{s1}} \Gamma(m_{s1})} \sum_{i=0}^{m_{21}-1} \sum_{i_1=0}^{i} \binom{i}{i_1} \frac{\rho_s^{i_1}}{i!} \\ & \times \left(\frac{m_{21} \phi_5^A}{\Omega_{21}}\right)^i \exp\left(-\frac{m_{21} \phi_5^A}{\Omega_{21}}\right), \end{split} \tag{28b}$$

where $\Gamma(\cdot)$ is the Gamma function. Note that the condition $\phi_5^A > 0$ should be met to implement NOMA successfully in practice.

Following the same steps in (27), we can obtain $\mathbb{P}_{1.1}^{t_2,x_{d_1}}$ as

$$\mathbb{P}_{1,1}^{t_2,x_{d_1}} = \Pr(\lambda_{s1} < \phi_3, \lambda_{s2} > \phi_3, \lambda_{21} > \lambda_{s1}\rho_s\phi_5^1 + \phi_5^1)$$

$$= \mathcal{L}_1 \left(\phi_3, i_1 + m_{s1} - 1, \frac{m_{s1}}{\Omega_{s1}} + \frac{m_{21}\rho_s\phi_5^1}{\Omega_{21}} \right)$$

$$\times (1 - F_{\lambda_{s2}}(\phi_3)) \Delta_i^1. \tag{29}$$

Moreover, using $\gamma_{1,x_3}^{t_1}$, $\gamma_{2,x_3}^{t_1}$, $\gamma_{1,x_{d_1}}^{t_2,2}$ and binomial expansion, we can calculate $\mathbb{P}_{1,2}^{t_2,x_{d_1}}$ as

$$\mathbb{P}_{1,2}^{t_2,x_{d_1}} = \Pr\left(\lambda_{s1} > \phi_3, \lambda_{s2} < \phi_3, \lambda_{21} > \lambda_{s1}\rho_s\phi_5^2 + \phi_5^2\right)
= \mathcal{L}_2\left(\phi_3, i_1 + m_{s1} - 1, \frac{m_{s1}}{\Omega_{s1}} + \frac{m_{21}\rho_s\phi_5^2}{\Omega_{21}}\right)
\times F_{\lambda_{s2}}\left(\phi_3\right) \Delta_i^2,$$
(30)

where the function \mathcal{L}_2 follows [39, eq. (3.351.2)] with

$$\mathcal{L}_{2}(C, \eta, \mu) \stackrel{\Delta}{=} \int_{C}^{\infty} z^{\eta} \exp(-\mu z) dz$$

$$= \exp(-C\mu) \sum_{\varepsilon_{1}=0}^{\eta} \frac{\eta! C^{\varepsilon_{1}}}{\varepsilon_{1}! \mu^{\eta - \varepsilon_{1} + 1}}.$$
(31)

Similar to (30), we can use $\gamma_{1,x_3}^{t_1}, \gamma_{2,x_3}^{t_1}, \gamma_{1,x_{d_1}}^{t_2,3}$ and binomial expansion to obtain $\mathbb{P}_{1,3}^{t_2,x_{d_1}}$ as

$$\mathbb{P}_{1,3}^{t_2,x_{d_1}} = \Pr\left(\lambda_{s1} > \phi_3, \lambda_{s2} > \phi_3, \lambda_{21} > \lambda_{s1}\rho_s\phi_5^3 + \phi_5^3\right)
= \mathcal{L}_2\left(\phi_3, i_1 + m_{s1} - 1, \frac{m_{s1}}{\Omega_{s1}} + \frac{m_{21}\rho_s\phi_5^3}{\Omega_{21}}\right)
\times (1 - F_{\lambda_{s2}}(\phi_3))\Delta_i^3.$$
(32)

Combining (25), (27), (29), (30) and (32), we obtain

Theorem 1: The outage probability for U_1 to decode x'_1 in the second phase can be written as

$$P_{1,\text{out}}^{t_2,x_1'} = 1 - \sum_{\bar{t}=0}^{3} \mathbb{P}_{1,\bar{k}}^{t_2,x_1'},\tag{33}$$

where

$$\mathbb{P}_{1,0}^{t_{2},x_{1}'} = \left\{ \Delta_{j_{1}}^{0} \left(\mathcal{L}_{1} \left(\phi_{3}, j_{1} + m_{s_{1}} - 1, \frac{m_{21}\phi_{5}^{0}\rho_{s}}{\Omega_{21}} + \frac{m_{s_{1}}}{\Omega_{s_{1}}} \right) \right. \\
\left. - \mathcal{L}_{1} \left(\xi_{1}^{0}, j_{1} + m_{s_{1}} - 1, \frac{m_{21}\phi_{5}^{0}\rho_{s}}{\Omega_{21}} + \frac{m_{s_{1}}}{\Omega_{s_{1}}} \right) \right) \\
\left. - \Delta_{j_{2}}^{0} \left(\mathcal{L}_{1} \left(\phi_{3}, j_{2} + m_{s_{1}} - 1, \frac{m_{21}\rho_{s}\phi_{7}^{0}}{\Omega_{21}\varphi_{x_{1}'}} + \frac{m_{s_{1}}}{\Omega_{s_{1}}} \right) \right) \\
\left. - \mathcal{L}_{1} \left(\xi_{1}^{0}, j_{2} + m_{s_{1}} - 1, \frac{m_{21}\rho_{s}\phi_{7}^{0}}{\Omega_{21}\varphi_{x_{1}'}} + \frac{m_{s_{1}}}{\Omega_{s_{1}}} \right) \right) \right\} \\
\times F_{\lambda_{c2}} \left(\phi_{3} \right) \delta \left(\phi_{7}^{0} - \varphi_{x_{1}'} \phi_{5}^{0} \right), \tag{34a}$$

$$\mathbb{P}_{1,1}^{t_2,x_1'} = \mathbb{P}_{1,0}^{t_2,x_1'} \left(\xi_1^0 \to \xi_1^1, \phi_7^0 \to \phi_7^1, \phi_5^0 \to \phi_5^1 \right) \\
\times \frac{\left(1 - F_{\lambda_{s2}} \left(\phi_3 \right) \right)}{F_{\lambda_{s2}} \left(\phi_3 \right)}, \tag{34b}$$

$$\mathbb{P}_{1,2}^{t_{2},x'_{1}} = \left\{ \Delta_{j_{1}}^{2} \mathcal{L}_{2} \left(\xi_{2}^{2}, m_{s1} + j_{1} - 1, \frac{m_{21} \rho_{s} \phi_{5}^{2}}{\Omega_{21}} + \frac{m_{s1}}{\Omega_{s1}} \right) - \Delta_{j_{2}}^{2} \mathcal{L}_{2} \left(\xi_{2}^{2}, m_{s1} + j_{2} - 1, \frac{m_{21} \rho_{s}}{\Omega_{21}} \frac{\phi_{7}^{2}}{\varphi_{x'_{1}}} + \frac{m_{s1}}{\Omega_{s1}} \right) \right\} \times F_{\lambda_{s2}} (\phi_{3}) \, \delta \left(\phi_{7}^{2} - \varphi_{x'_{1}} \phi_{5}^{2} \right), \tag{34c}$$

$$\mathbb{P}_{1,3}^{t_2,x_1'} = \mathbb{P}_{1,2}^{t_2,x_1'} \left(\xi_2^2 \to \xi_2^3, \phi_5^2 \to \phi_5^3, \phi_7^2 \to \phi_7^3 \right) \\
\times \frac{\left(1 - F_{\lambda_{s2}} \left(\phi_3 \right) \right)}{F_{\lambda_{s1}} \left(\phi_3 \right)}, \tag{34d}$$

$$\phi_7^A = \frac{1}{(\kappa_{1,1}^{t_2,A} b_1^A + b_2^A + \varpi^A b_3^A) \alpha \rho_s},$$
(35a)

$$\xi_1^A = \min \left\{ \frac{\left(\phi_5^A + \phi_7^A\right) \varphi_{x_1'}}{\left(\phi_7^A - \varphi_{x_1'} \phi_5^A\right) \rho_s}, \phi_3 \right\}, \tag{35b}$$

$$\xi_2^A = \max \left\{ \frac{(\phi_5^A + \phi_7^A)\varphi_{x_1'}}{(\phi_7^A - \varphi_{x_1'}\phi_5^A)\rho_s}, \phi_3 \right\}, \tag{35c}$$

$$\Delta_{j_1}^A = \frac{m_{s1}^{m_{s1}}}{\Omega_{s1}^{m_{s1}}\Gamma(m_{s1})} \exp\left(-\frac{m_{21}\phi_5^A}{\Omega_{21}}\right) \times \sum_{j=0}^{m_{21}-1} \sum_{j_1=0}^{j} \binom{j}{j_1} \left(\frac{m_{21}\phi_5^A}{\Omega_{21}}\right)^j \frac{(\rho_s)^{j_1}}{j!}, (35d)$$

$$\Delta_{j_{2}}^{A} = \sum_{j=0}^{m_{21}-1} \sum_{j_{2}=0}^{j} {j \choose j_{2}} \left(\frac{m_{21}\phi_{7}^{A}}{\Omega_{21}}\right)^{j} \left(\frac{\rho_{s}}{\varphi_{x'_{1}}}\right)^{j_{2}}/j! \times (-1)^{j-j_{2}} \frac{m_{s_{1}}^{m_{s_{1}}}}{\Omega_{s_{1}}^{m_{s_{1}}}\Gamma(m_{s_{1}})} \exp\left(\frac{m_{21}\phi_{7}^{A}}{\Omega_{21}}\right), \quad (35e)$$

and the values of the step function $\delta(z)$ are zero and one for z < 0 and z > 0, respectively.

Proof: See Appendix A.

The outage probability for U_3 to decode x_{d_3} in the second phase should be discussed in four cases (i.e., A = 0, 1, 2, 3), and the corresponding expression can be written as

$$P_{3,\text{out}}^{t_2,x_{d_3}} = 1 - \sum_{\bar{k}=0}^{3} \mathbb{P}_{3,\bar{k}}^{t_2,x_{d_3}},\tag{36}$$

where $\mathbb{P}^{t_2,x_{d_3}}_{3,\bar{k}} = \Pr(A=\bar{k})\Pr(E^{t_2,\bar{k}}_{3,x_{d_1}}\cap E^{t_2,\bar{k}}_{3,x_{d_3}}|A=\bar{k}).$ When the events that both U_1 and U_2 cannot decode x_3 in the first phase occur (i.e., A=0), we can use $\gamma_{1,x_3}^{t_1}$, $\gamma_{2,x_3}^{t_1}$, $\gamma_{3,x_{d_1}}^{t_2,0}$ and $\gamma_{3,x_{d_3}}^{t_2,0}$ to calculate $\mathbb{P}_{3,0}^{t_2,x_{d_3}}$ as

$$\mathbb{P}_{3,0}^{t_{2},x_{d_{3}}} = \Pr\left(\lambda_{s1} < \phi_{3}, \lambda_{s2} < \phi_{3}, \lambda_{23} > \tilde{\phi}_{4}^{0}\right)$$

$$= F_{\lambda_{s1}}(\phi_{3}) F_{\lambda_{s2}}(\phi_{3}) \left(1 - F_{\lambda_{23}}\left(\tilde{\phi}_{4}^{0}\right)\right), \quad (37)$$

 $\begin{array}{lll} \text{where} & \tilde{\phi}_4^A = \max\left\{\phi_4^A, \phi_8^A\right\} & \text{and} & \phi_8^A = \\ \frac{1}{\alpha\rho_s\left(b_2^A - \left(\kappa_{3,2}^{t_2,A}b_1^A + \kappa_{3,3}^{t_2,A}b_3^A\right)\varphi_{x_{d_3}}\right)}. & \text{Similarly, the condition} \end{array}$ $\phi_8^A > 0$ should be met, otherwise the outage probability for U_3 to decode x_{d_3} is always one.

If U_1 cannot decode x_3 in the first phase while U_2 can decode x_3 successfully (i.e., A = 1), the non-outage probability for U_3 to decode x_{d_3} during the second phase can be calculated as

$$\mathbb{P}_{3,1}^{t_{2},x_{d_{3}}} = \Pr\left(\lambda_{s1} < \phi_{3}, \lambda_{s2} > \phi_{3}, \lambda_{23} > \tilde{\phi}_{5}^{1}\right)$$

$$= F_{\lambda_{s1}}\left(\phi_{3}\right)\left(1 - F_{\lambda_{s2}}\left(\phi_{3}\right)\right)\left(1 - F_{\lambda_{23}}\left(\tilde{\phi}_{5}^{1}\right)\right), (38)$$

where $\tilde{\phi}_5^A = \max\left\{\phi_4^A, \phi_6^A, \phi_8^A\right\}$. Similar to (37), using $\gamma_{1,x_3}^{t_1}$, $\gamma_{2,x_3}^{t_1}$, $\gamma_{3,x_{d_1}}^{t_2,2}$ and $\gamma_{3,x_{d_3}}^{t_2,2}$, we can calculate $\mathbb{P}_{1,2}^{t_2,x_{d_3}}$ as

$$\mathbb{P}_{3,2}^{t_{2},x_{d_{3}}} = \Pr\left(\lambda_{s_{1}} > \phi_{3}, \lambda_{s_{2}} < \phi_{3}, \lambda_{23} > \tilde{\phi}_{4}^{2}\right)$$

$$= (1 - F_{\lambda_{s_{1}}}(\phi_{3})) F_{\lambda_{s_{2}}}(\phi_{3}) \left(1 - F_{\lambda_{23}}\left(\tilde{\phi}_{4}^{2}\right)\right). (39)$$

When the events that both U_1 and U_2 can decode x_3 successfully during the second phase occur (i.e., A = 3), the non-outage probability for U_3 to decode x_{d_3} can be calculated by using $\gamma_{1,x_3}^{t_1}$, $\gamma_{2,x_3}^{t_2}$, $\gamma_{3,x_{d_1}}^{t_2,3}$, $\gamma_{3,x_3}^{t_2,3}$ and $\gamma_{3,x_{d_3}}^{t_2,3}$ as

$$\mathbb{P}_{3,3}^{t_{2},x_{d_{3}}} = \Pr\left(\lambda_{s1} > \phi_{3}, \lambda_{s2} > \phi_{3}, \lambda_{23} > \tilde{\phi}_{5}^{3}\right)
= (1 - F_{\lambda_{s1}}(\phi_{3})) (1 - F_{\lambda_{s2}}(\phi_{3}))
\times \left(1 - F_{\lambda_{23}}(\tilde{\phi}_{5}^{3})\right).$$
(40)

Substituting (37), (38), (39) and (40) into (36), we obtain

Based on the derivations of the outage probability, the following theorem provides the diversity orders of all the data streams to investigate the diversity gain of the proposed scheme.

Theorem 2: The achievable diversity orders achieved by the data streams x_1 , x_2 , x_3 , x'_1 , x_{d_1} and x_{d_3} are one, one, one, zero, zero and one, respectively.

Furthermore. using (19), (21), (22), (25), (33) and (36), we can write the outage throughput for the proposed scheme as

$$\mathcal{T} = (1 - P_{1,\text{out}}^{t_1, x_1}) R_{x_1} + (1 - P_{2,\text{out}}^{t_1, x_2}) R_{x_2}$$

$$+ (1 - P_{3,\text{out}}^{t_2, x_3}) R_{x_3} + (1 - P_{1,\text{out}}^{t_2, x_{d_1}}) R_{x_{d_1}}$$

$$+ (1 - P_{1,\text{out}}^{t_2, x_1'}) R_{x_1'} + (1 - P_{3,\text{out}}^{t_2, x_{d_3}}) R_{x_{d_3}}.$$
 (41)

B. Ergodic Sum Capacity and Average SE

When the target data rates vary dynamically according to the channel qualities, the ergodic sum capacity for the proposed scheme can be expressed as

$$\bar{C}_{\text{sum}} = \sum_{\forall \dot{x} \in \dot{X}} \bar{C}_{\dot{x}} + \sum_{\forall \ddot{x} \in \ddot{X}} \bar{C}_{\ddot{x}}^{3}, \tag{42}$$

where $\bar{C}_{\dot{x}} = \mathbb{E}[C_{\dot{x}}], \; \bar{C}^3_{\dot{x}} = \mathbb{E}[C^3_{\dot{x}}], \; \dot{X} \in \{x_1, x_2\} \text{ and } \ddot{X} \in$ $\{x_3, x_{d_1}, x_{d_3}, x_1'\}.$

For simplicity, we first provide some defined functions and integral calculation equations before deriving the ergodic capacity. Applying [39, eq.(3.353.5)] to the following integral, we have

$$\mathcal{L}_{3}(\eta,\mu) \stackrel{\Delta}{=} \int_{0}^{\infty} \frac{z^{\eta}}{1+z} \exp(-\mu z) dz$$

$$= \sum_{\kappa=1}^{\eta} (-1)^{\eta-\kappa} (\kappa-1)! \mu^{-\kappa}$$

$$+ (-1)^{\eta-1} \exp(\mu) \operatorname{Ei}(-\mu), \tag{43}$$

where $Ei(\cdot)$ is the exponential integral function. Using the variable substitution, binomial expansion and [39, eqs.(3.351.2)] and (3.351.4)], we can define the following integral as

$$\mathcal{L}_{4}(\eta, \bar{\eta}, \eta^{*}, \mu) \stackrel{\Delta}{=} \int_{0}^{\infty} \frac{z^{\eta}}{(z + \eta^{*})^{\bar{\eta}}} \exp(-\mu z) dz
= \sum_{\eta_{1}=0}^{\eta} {\eta \choose \eta_{1}} (-\eta^{*})^{\eta - \eta_{1}} \exp(\mu \eta^{*})
\times \begin{cases} \exp(-\mu \eta^{*}) \sum_{\eta_{2}=0}^{\eta_{1} - \bar{\eta}} \frac{(\eta_{1} - \bar{\eta})!(\eta^{*})^{\eta_{2}}}{\eta_{2}!\mu^{\eta_{1} - \bar{\eta} - \eta_{2} + 1}}, \eta_{1} - \bar{\eta} \geq 0,
\frac{-(-\mu)^{\bar{\eta} - \eta_{1} - 1} \text{Ei}(-\mu \eta^{*})}{(\bar{\eta} - \eta_{1} - 1)!} + \frac{\exp(-\mu \eta^{*})}{(\eta^{*})^{\bar{\eta} - \eta_{1} - 1}} \\
\times \sum_{\eta_{3}=0}^{\bar{\eta} - \eta_{1} - 2} \frac{(-\mu \eta^{*})^{\eta_{3}}(\bar{\eta} - \eta_{1} - \eta_{3} - 2)!}{(\bar{\eta} - \eta_{1} - 1)!}, \end{cases} (44)$$

where η^* denotes a constant. Moreover, we give an integral calculation equation

$$\int_0^\infty \ln(z+1)f_Z(z)dz = \int_0^\infty \frac{1 - F_Z(z)}{1 + z}dz.$$
 (45)

Let $X_1 \stackrel{\triangle}{=} \lambda_{s1}(a_1 + \kappa_{1,2}^{t_1} a_2 + \kappa_{1,3}^{t_1} a_3) \rho_s$ and X_2 $\lambda_{s1}(\kappa_{1,2}^{t_1} a_2 + \kappa_{1,3}^{t_1} a_3) \rho_s$. Using (4), (13) and (45), we have

$$\bar{C}_{x_{1}} = \frac{1}{2\ln 2} \left\{ \int_{0}^{\infty} \frac{1 - F_{X_{1}}(x)}{1 + x} dx - \int_{0}^{\infty} \frac{1 - F_{X_{2}}(x)}{1 + x} dx \right\}
= \frac{1}{2\ln 2} \left\{ \Delta_{d_{1}} \mathcal{L}_{3} \left(d_{1}, \frac{m_{s_{1}}}{\Omega_{s_{1}} \left(a_{1} + \kappa_{1,2}^{t_{1}} a_{2} + \kappa_{1,3}^{t_{1}} a_{3} \right) \rho_{s}} \right) - \Delta_{d_{2}} \mathcal{L}_{3} \left(d_{2}, \frac{m_{s_{1}}}{\Omega_{s_{1}} \left(\kappa_{1,2}^{t_{1}} a_{2} + \kappa_{1,3}^{t_{1}} a_{3} \right) \rho_{s}} \right) \right\},$$
(46)

where
$$\Delta_{d_1} = \sum_{d_1=0}^{m_{s_1}-1} \left(\frac{m_{s_1}}{\Omega_{s_1} \left(a_1 + \kappa_{1,2}^{t_1} a_2 + \kappa_{1,3}^{t_1} a_3 \right) \rho_s} \right)^{d_1} / d_1!,$$

$$\Delta_{d_2} = \sum_{d_2=0}^{m_{s_1}-1} \left(\frac{m_{s_1}}{\Omega_{s_1} \left(\kappa_{1,2}^{t_1} a_2 + \kappa_{1,3}^{t_1} a_3 \right) \rho_s} \right)^{d_2} / d_2!,$$

$$F_{X_1}(x) = F_{\lambda_{s1}}\left(\frac{x}{\left(a_1 + \kappa_{1,2}^{t_1} a_2 + \kappa_{1,3}^{t_1} a_3\right)\rho_s}\right) \quad \text{and} \quad F_{X_2}(x) = F_{\lambda_{s1}}\left(\frac{x}{\left(\kappa_{1,2}^{t_1} a_2 + \kappa_{1,3}^{t_1} a_3\right)\rho_s}\right). \text{ Note that the equation} \quad \mathcal{L}_3(\eta, \infty) = 0 \text{ holds.}$$

For mathematical tractability, we assume that U_1 and U_2 suffer the same residual interference as x_3 (i.e., $\kappa_{1,1}^{t_1} = \kappa_{2,1}^{t_1}$) when U_1 and U_2 perform imperfect SIC to decode x_3 in the first phase. Let $Y \triangleq \min(\lambda_{s1}, \lambda_{s2}), \ Y_1 \triangleq Y(a_1 + a_2 + \kappa_{1,1}^{t_1} a_3)\rho_s$ and $Y_2 \triangleq Y(a_1 + \kappa_{1,1}^{t_1} a_3)\rho_s$. Using the order statistic, we can obtain the CDF of Y as

$$F_Y(y) = 1 - (1 - F_{\lambda_{s1}}(y)) (1 - F_{\lambda_{s2}}(y))$$

$$= 1 - \Delta_e y^{e_1 + e_2} \exp\left(-\left(\frac{m_{s1}}{\Omega_{s1}} + \frac{m_{s2}}{\Omega_{s2}}\right) y\right), \quad (47)$$

where $\Delta_e = \sum_{e_1=0}^{m_{s_1}-1} \sum_{e_2=0}^{m_{s_2}-1} \left(\frac{m_{s_1}}{\varOmega_{s_1}}\right)^{e_1} \left(\frac{m_{s_2}}{\varOmega_{s_2}}\right)^{e_2} / e_1! / e_2!.$ Furthermore, the CDFs of Y_1 and Y_2 can be written as $F_{Y_1}(y) = F_Y\left(\frac{y}{(a_1+a_2+\kappa_{1,1}^{t_1}a_3)\rho_s}\right)$ and $F_{Y_2}(y) = F_Y\left(\frac{y}{(a_1+\kappa_{1,1}^{t_1}a_3)\rho_s}\right)$, respectively. Using (3), (16), (45) and (47), we can calculate \bar{C}_{x_2} as

$$\bar{C}_{x_2} = \frac{1}{2\ln 2} \left\{ \int_0^\infty \frac{1 - F_{Y_1}(y)}{1 + y} dy - \int_0^\infty \frac{1 - F_{Y_2}(y)}{1 + y} dy \right\}
= \frac{1}{2\ln 2} \left\{ \Delta_{e_1} \mathcal{L}_3(e_1 + e_2, \Theta_1) - \Delta_{e_2} \mathcal{L}_3(e_1 + e_2, \Theta_2) \right\}, (48)$$

where
$$\Delta_{e_1} = \Delta_e \left(\left(a_1 + a_2 + \kappa_{1,1}^{t_1} a_3 \right) \rho_s \right)^{-e_1 - e_2}, \ \Delta_{e_2} = \Delta_e \left(\left(a_1 + \kappa_{1,1}^{t_1} a_3 \right) \rho_s \right)^{-e_1 - e_2}, \ \Theta_1 = \frac{m_{s1}/\Omega_{s1} + m_{s2}/\Omega_{s2}}{\left(a_1 + a_2 + \kappa_{1,1}^{t_1} a_3 \right) \rho_s} \text{ and } \Theta_2 = \frac{m_{s1}/\Omega_{s1} + m_{s2}/\Omega_{s2}}{\left(a_1 + \kappa_{1,1}^{t_1} a_3 \right) \rho_s}.$$

The ergodic capacity of x_3 is determined by $\bar{U} \triangleq \min\{\bar{U}_1, \bar{U}_2, \bar{U}_3\}$, where $\bar{U}_1 \triangleq \gamma_{1,x_3}^{t_1}$, $\bar{U}_2 \triangleq \gamma_{2,x_3}^{t_1}$ and $\bar{U}_3 \triangleq \gamma_{3,x_3}^{t_2,3}$. The CDF of \bar{U}_i , $i \in \{1,2,3\}$ is given by

$$F_{\bar{U}_i}(u) = \begin{cases} \bar{F}_{\bar{U}_i}(u), & u < \theta_i, \\ 1, & u \ge \theta_i, \end{cases}$$

$$\tag{49}$$

where $\bar{F}_{\bar{U}_1}(u) = F_{\lambda_{s1}}(\frac{u}{(a_3-(a_1+a_2)u)\rho_s})$, $\bar{F}_{\bar{U}_2}(u) = F_{\lambda_{s2}}(\frac{u}{(a_3-(a_1+a_2)u)\rho_s})$, $\bar{F}_{\bar{U}_3}(u) = F_{\lambda_{23}}(\frac{u}{(b_3^3-(\kappa_{3,1}^{t_2,3}b_1^3+b_2^3)u)\alpha\rho_s})$, $\theta_1 = \theta_2 = \frac{a_3}{a_1+a_2}$ and $\theta_3 = \frac{b_3^3}{\kappa_{2,2}^{t_2,3}b_3^3+b_2}$. Using (49) and order statistic, we have

$$F_{\bar{U}}(u) = 1 - \Pi_{i=1}^{3} (1 - F_{\bar{U}_{i}}(u))$$

$$= \begin{cases} 1 - \Pi_{i=1}^{3} (1 - \bar{F}_{\bar{U}_{i}}(u)), & u < \tilde{\theta}, \\ 1, & u \ge \tilde{\theta}, \end{cases}$$
(50)

where $\tilde{\theta} = \min\{\theta_1, \theta_3\}$. Based on (18), (45) and (50), we can use Gaussian-Chebyshev quadrature to approximate $\bar{C}_{x_2}^3$ as

$$\bar{C}_{x_3}^3 = \frac{1}{2\ln 2} \int_0^{\tilde{\theta}} \frac{\prod_{i=1}^3 \left(1 - \bar{F}_{\bar{U}_i}(u)\right)}{1 + u} du
\approx \frac{\tilde{\theta}\pi}{4\ln 2} \sum_{n_1=1}^{N_1} \frac{\sqrt{1 - \psi_{n_1}^2}}{N_1} \frac{\prod_{i=1}^3 \left(1 - \bar{F}_{\bar{U}_i}(q_{n_1})\right)}{1 + a}, (51)$$

where $q_{n_1}=\frac{(1+\psi_{n_1})\tilde{\theta}}{2}$, $\psi_{n_1}=\cos\left(\frac{2n_1-1}{2N_1}\pi\right)$, and N_1 is a complexity-accuracy tradeoff parameter.

Let $V \stackrel{\Delta}{=} \gamma_{1,x_1'}^{t_2,3}$. The CDF of V can be written as $F_V(v) = 1 - \Delta_f(v + F_1)^{-f_1 - m_{21}} v^f \exp\left(-\frac{m_{s1}}{\varOmega_{s1} \rho_s} v\right)$ by using (9), (20) and the binomial expansion, where $\Delta_f = \frac{m_{21}^{m_{21}} \Gamma(m_{21})}{\varOmega_{21}^{m_{21}} \Gamma(m_{21})} \sum_{f=0}^{f_{s1}-1} \sum_{f_1=0}^f \binom{f}{f_1} \frac{(f_1 + m_{21} - 1)!}{f!} \binom{m_{s1}}{\varOmega_{s1}} f^{-f_1 - m_{21}} \times \left(\kappa_{1,1}^{t_1,3} b_1^3 + b_2^3\right)^{-m_{21}} \alpha^{-m_{21}} \rho_s^{f_1 - f} \quad \text{and} \quad F_1 = \frac{m_{21} \varOmega_{s1}}{m_{s1} \varOmega_{21} \left(\kappa_{1,1}^{t_2,3} b_1^3 + b_2^3\right) \alpha}.$ Thus, using (14), (45), (46), (47), and the partial fraction decomposition, we can calculate the closed-form expression of $\bar{C}_{x_1'}^3$ as

$$\bar{C}_{x_{1}'}^{3} = \frac{\Delta_{f}}{2\ln 2} \int_{0}^{\infty} \frac{v^{f}}{(v+F_{1})^{f_{1}+m_{21}}(1+v)} \exp\left(-\frac{m_{s1}}{\Omega_{s1}\rho_{s}}v\right) dv$$

$$= \frac{\Delta_{f}}{2\ln 2} \left\{ \sum_{f_{2}=1}^{f_{1}+m_{21}} -\frac{1}{(F_{1}-1)^{f_{2}}} \mathcal{L}_{4}\left(f,\bar{f},F_{1},\frac{m_{s1}}{\Omega_{s1}\rho_{s}}\right) + \frac{1}{(F_{1}-1)^{f_{1}+m_{21}}} \mathcal{L}_{3}\left(f,\frac{m_{s1}}{\Omega_{s1}\rho_{s}}\right) \right\},$$
(52)

where $\bar{f}=f_1+m_{21}-f_2+1$. Let $W_1\stackrel{\Delta}{=}\gamma_{3,x_{d_1}}^{t_2,3}$, $W_2\stackrel{\Delta}{=}\gamma_{1,x_{d_1}}^{t_2,3}$ and $W\stackrel{\Delta}{=}\min\{W_1,W_2\}$. Similar to (50), the CDF of W can be expressed as

$$F_{W}(w) = 1 - \Pi_{i=1}^{2} (1 - F_{W_{i}}(w))$$

$$= \begin{cases} 1 - \Pi_{i=1}^{2} (1 - \bar{F}_{W_{i}}(w)), & w < \frac{b_{1}^{3}}{b_{2}^{3} + b_{3}^{3}}, \\ 1, & w \ge \frac{b_{1}^{3}}{b_{2}^{3} + b_{3}^{3}}, \end{cases} (53)$$

where $\bar{F}_{W_1}(w) = F_{\lambda_{23}}\left(\frac{w}{\alpha\rho_s(b_1^3-(b_2^3+b_3^3)w)}\right)$, $\bar{F}_{W_2}(w) = 1 - \Delta_g(w)G(w)^{-g_1-m_{s1}}$, $G(w) = \frac{m_{21}\rho_sw}{(b_1^3-b_2^3w)\alpha\rho_s\Omega_{21}} + \frac{m_{s1}}{\Omega_{s1}}$, $\Delta_g(w) = \sum_{g=0}^{m_{21}-1}\sum_{g_1=0}^g \frac{m_{s_1}^{m_{s1}}}{\Omega_{s_1}^{m_{s1}}\Gamma(m_{s1})g!}(\frac{m_{21}}{\Omega_{21}})^g(g_1^g)\rho_sg_1(g_1+m_{s1}-1)!(\frac{w}{(b_1^3-b_2^3w)\alpha\rho_s})^g \exp\left(-\frac{m_{21}w}{(b_1^3-b_2^3w)\alpha\rho_s\Omega_{21}}\right)$. Therefore, we can use (17), (45), (53), and Gaussian-Chebyshev quadrature to obtain an approximation of $\bar{C}_{x_{d_1}}^3$ as

$$\bar{C}_{x_{d_1}}^3 \approx \frac{b_1^3 \pi}{4(b_2^3 + b_3^3) \ln 2} \sum_{n_2=1}^{N_2} \frac{\sqrt{1 - \psi_{n_2}^2}}{N_2} \times \frac{\prod_{i=1}^2 (1 - \bar{F}_{W_i}(q_{n_2}))}{1 + q_{n_2}}, \tag{54}$$

where $q_{n_2}=\frac{(1+\psi_{n_2})b_1^3}{2(b_2^3+b_3^3)}$, $\psi_{n_2}=\cos\left(\frac{2n_2-1}{2N_2}\pi\right)$, N_2 denotes a complexity-accuracy tradeoff parameter.

Following the same steps in (46), we can use $\gamma_{3,x_{d_3}}^{t_2,3}$ to calculate $\bar{C}_{x_{d_2}}^3$ as

$$\bar{C}_{x_{d_3}}^3 = \frac{1}{2 \ln 2} \left\{ \Delta_{h_1} \mathcal{L}_3 \left(h_1, \frac{m_{23}}{\Omega_{23} \left(b_2^3 + \kappa_{3,2}^{t_2,3} b_1^3 + \kappa_{3,3}^{t_2,3} b_3^3 \right) \alpha \rho_s} \right) - \Delta_{h_2} \mathcal{L}_3 \left(h_2, \frac{m_{23}}{\Omega_{23} \left(\kappa_{3,2}^{t_2,3} b_1^3 + \kappa_{3,3}^{t_2,3} b_3^3 \right) \alpha \rho_s} \right) \right\}, \quad (55)$$

where
$$\Delta_{h_1} = \sum_{h_1=0}^{m_{23}-1} \left(\frac{m_{23}}{\Omega_{23}(b_2^3 + \kappa_{3,2}^{t_2,3} b_1^3 + \kappa_{3,3}^{t_2,3} b_3^3) \alpha \rho_s} \right)^{h_1} / h_1!$$
 and $\Delta_{h_2} = \sum_{h_2=0}^{m_{23}-1} \left(\frac{m_{23}}{\Omega_{23}(\kappa_{3,2}^{t_2,3} b_1^3 + \kappa_{3,3}^{t_2,3} b_3^3) \alpha \rho_s} \right)^{h_2} / h_2!$. Combining (42), (46), (48), (51), (52), (54) and (55), we

Combining (42), (46), (48), (51), (52), (54) and (55), we obtain \bar{C}_{sum} .

Based on [40, eq.(3.104)] and (42), the average SE can be defined as the average number of delivered bits per bandwidth

$$\bar{C}_{\rm SE} \stackrel{\Delta}{=} \frac{\bar{C}_{\rm sum}}{W_B},$$
 (56)

where W_B represents the occupied bandwidth. To analyze the average SE of the proposed scheme, we consider the unit time (i.e., 1 s) and normalized bandwidth (i.e., $W_B=1$ Hz) in this paper. Therefore, using the previous analysis of the ergodic sum capacity, we obtain $\bar{C}_{\rm SE}=\bar{C}_{\rm sum}$.

The following theorem gives the SE scaling of the proposed scheme to achieve more insights into the average SE.

Theorem 3: In the high transmit SNR region (i.e., $\rho_s \to \infty$), the SE scaling of the proposed scheme with perfect and imperfect SIC are $\log_2 \rho_s$ and zero, respectively.

V. NUMERICAL RESULTS

In this section, we adopt extensive Monte Carlo simulations to investigate the performance of the proposed adaptive transmission scheme with both perfect and imperfect SIC. Specifically, the outage probability, outage throughput and average SE of the proposed scheme (Prop.) are compared with the conventional D-CDRT scheme in [34] using the same simulation parameters. In the simulations, we consider two distance settings, i.e., Case I: $d_{s1} = 80$ m, $d_{s2} = 90$ m, $d_{21} = 15$ m, and $d_{23} = 5$ m; Case II: $d_{s1} = 50$ m, $d_{s2} = 55$ m, $d_{21} = 10$ m, and $d_{23} = 5$ m. The channel gain for reference distance, the path loss exponent, the noise power, and the scale factor are set to $G_0 = -40$ dB, $\alpha_0 = 2.7$, $N_0 = -110$ dBm, and $\alpha = 0.05$, respectively. Moreover, the target data rates are set to $R_{x_1}=R_{x_2}=R_{x_3}=R_{x_{d_3}}=0.3$ bit/s/Hz and $R'_{x_1}=R_{x_{d_1}}=0.1$ bit/s/Hz. The power allocation coefficients are $a_1 = 0.01$, $a_2 = 0.09$ and $a_3 = 0.9$, and the power allocation coefficient combinations (A, b_1^A, b_2^A, b_3^A) are set to (0, 0.99, 0.01, 0), (1, 0.9, 0.01, 0.09), (2, 0.99, 0.01, 0) and (3, 0.9, 0.01, 0.09). For simplicity, we assumed that all the fractional error factors (e.g., $\kappa_{1,2}^{t_1}$ and $\kappa_{1,1}^{t_2,A}$) equal κ_0 for imperfect SIC [41].

To implement NOMA successfully, the conventional D-CDRT scheme requires power control at BS. Since $d_{s1} < d_{s2}$ and $d_{23} < d_{21}$, the power allocation coefficients of the D-CDRT are set as $\alpha_{e1} = a_2 + a_3$, $\alpha_c = a_1$, $\alpha_d = b_1^3 + b_3^3$ and $\alpha_{e2} = b_2^3$, while the corresponding power ratio is assumed to be $\beta = \frac{\alpha_d P_u}{2P_s}$ for fair comparisons.

A. Outage Probability and Outage Throughput

In Fig. 2, we plot the outage probability for U_1 to decode x_1 in t_1 ($P_{1,\mathrm{out}}^{t_1,x_1}$) versus the transmit power of BS with both perfect SIC and imperfect SIC. Fig. 2 validates that the accurate theoretical results for the proposed scheme are in good agreement with the simulation ones. Fig. 2 illustrates that the proposed scheme achieves the same outage probability for U_1 in t_1 as the conventional D-CDRT scheme. This is because the decoding procedure and parameter settings (i.e., the target data rates, power allocation coefficients and fractional error factors) of the proposed scheme are consistent with the conventional

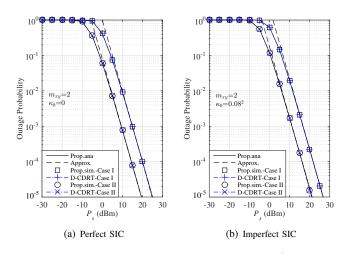


Fig. 2. Outage probability for U_1 to decode x_1 in t_1 (i.e., $P_{1,\text{out}}^{t_1,x_1}$).

one. Although the decoding process of x_1 is affected by the residual interference caused by imperfect SIC, this process will not face the adjacent-channel interference. Therefore, the outage probability corresponding to x_1 becomes large with the increase of the residual interference level, while it has no error floors for large P_s . Meanwhile, the asymptotic lines are well-matched for the corresponding theoretical lines in the high transmit SNR region, which verifies the correctness of the approximate result and diversity order analysis in Theorem 2.

Fig. 3 compares the outage probability for U_3 to decode x_3 in t_2 (i.e., $P_{3,\mathrm{out}}^{t_2,x_3}$) of the proposed scheme and the conventional D-CDRT scheme. From Fig. 3, the simulations of the proposed scheme agree well with the corresponding theoretical results, and the asymptotic lines gradually coincide with the theoretical ones when P_s increases. Unlike the stationary transmission scheme of the conventional D-CDRT scheme, the proposed scheme designs an adaptive aggregate transmission and a predetermined decoding order strategy, and thus U_3 can receive x_3 in t_2 as long as U_2 can decode x_3 successfully in t_1 . Based on this, the proposed scheme can achieve a lower $P_{3,\text{out}}^{t_2,x_3}$ than that of the conventional D-CDRT scheme with perfect and imperfect SIC, and the performance superiority becomes more evident in Case II. The proposed scheme has better robustness for facing imperfect SIC than that of the conventional D-CDRT scheme.

Fig. 4 shows the relationship between the outage probability for U_1 to decode x_1' in t_2 (i.e., $P_{1,\mathrm{out}}^{t_2,x_1'}$) and the transmit power of BS. In this figure, the simulation results are consistent with the theoretical ones. Since U_1 suffers the inter-user interference from U_2 in t_2 , both the proposed and conventional schemes have error floors for the outage probability related to x_1' for large P_s . Specifically, when perfect SIC is performed, the proposed scheme has a higher error floor for large P_s than the conventional scheme due to the aggregation transmission. However, the proposed scheme using the adaptive transmission can achieve better outage performance for small P_s . If imperfect SIC is performed, $P_{1,\mathrm{out}}^{t_2,x_1'}$ in the conventional scheme significantly decreases, while this phenomenon is not apparent in the proposed scheme because of adaptive transmission.

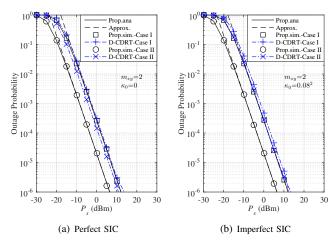


Fig. 3. Outage probability for U_3 to decode x_3 in t_2 (i.e., $P_{3 \text{ out}}^{t_2,x_3}$).

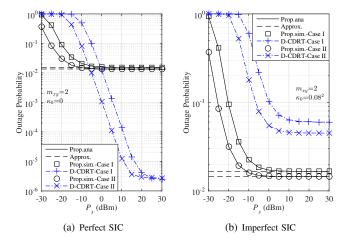


Fig. 4. Outage probability for U_1 to decode x'_1 in t_2 (i.e., $P_{1,\text{out}}^{t_2,x'_1}$).

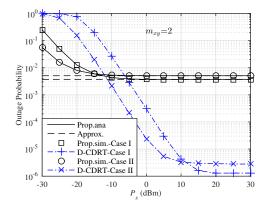


Fig. 5. Outage probability for U_1 to decode x_{d_1} in t_2 (i.e., $P_{1,\text{out}}^{t_2,x_{d_1}}$).

In Fig. 5, the outage probability for U_1 to decode x_{d_1} in t_2 (i.e., $P_{1,\mathrm{out}}^{t_2,x_{d_1}}$) versus the transmit power of BS is illustrated. The simulation results of the proposed scheme agree with the corresponding theoretical results perfectly. It is worth noting that the decoding process of x_{d_1} for the proposed scheme

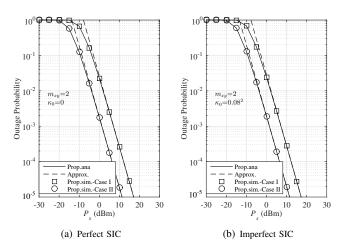


Fig. 6. Outage probability for U_2 to decode x_2 in t_1 (i.e., $P_{2 \text{ out}}^{t_1,x_2}$).

and conventional one will not suffer the residual interference, and thus imperfect SIC has no impact on $P_{1,\mathrm{out}}^{t_2,x_{d_1}}$. Due to the interference from BS, $P_{1,\mathrm{out}}^{t_2,x_{d_1}}$ for the proposed scheme and conventional one are subject to error floors for large P_s , which verifies that $P_{1,\mathrm{out}}^{t_2,x_{d_1}}$ has the diversity order of one. Meanwhile, the asymptotic line gradually coincides with the corresponding error floor with the increase of P_s . The proposed scheme achieves a higher error floor of $P_{1,\mathrm{out}}^{t_2,x_{d_1}}$ for larger P_s because a portion of the transmit power at U_2 is allocated to x_{d3} . Conversely, the proposed scheme can attain lower $P_{1,\mathrm{out}}^{t_2,x_{d_1}}$ for small P_s , which benefits from the design of adaptive transmission.

Fig. 6 and Fig. 7 depict the outage probabilities for U_2 and U_3 to decode x_2 and x_{d_3} in t_1 and t_2 (i.e., $P_{2,\text{out}}^{t_1,x_2}$ and $P_{3,\text{out}}^{t_2,x_{d_3}}$), respectively. In these two figures, the correctness of the theoretical analysis for the proposed scheme is verified through simulations, and the asymptotic result is well-matched with the theoretical value. The proposed scheme can use the same amount of time resource to transmit two extra data streams (i.e., x_2 and x_{d_3}) compared with the conventional scheme. From Fig. 6, we observe that $P_{2,\mathrm{out}}^{t_1,x_2}$ in Case II is lower than that in Case I. This is because Case II has a larger λ_{s2} than that in Case I. As expected, $P_{2,\mathrm{out}}^{t_1,x_2}$ becomes large as the residual interference level increases. In Fig. 7, the lines for $P_{3,\mathrm{out}}^{t_2,x_{d_3}}$ in Case I almost coincide with that in Case II under perfect and imperfect SIC, because both Case I and Case II have the same d_{23} . Besides, imperfect SIC can increase $P_{3,\text{out}}^{t_2,x_{d_3}}$, which is consistent with the analysis in (36). Moreover, both $P_{2,\text{out}}^{t_1,x_2}$ and $P_{3,\text{out}}^{t_2,x_{d_3}}$ have no error floors, and they can attain the diversity order of one.

In Fig. 8, the outage throughput versus P_s is illustrated under both perfect and imperfect SIC. The simulations validate the theoretical results in (41). Fig. 8 shows that the proposed scheme can attain high outage throughput than the conventional scheme. This is because the proposed scheme can use the same amount of time resource to transmit two more data streams through aggregate transmission. Meanwhile, since the outage throughput is affected by the outage probability and

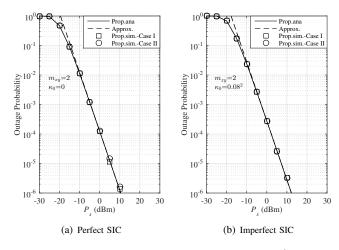


Fig. 7. Outage probability for U_3 to decode x_{d_3} in t_2 (i.e., $P_{3,\mathrm{out}}^{t_2,x_{d_3}}$).

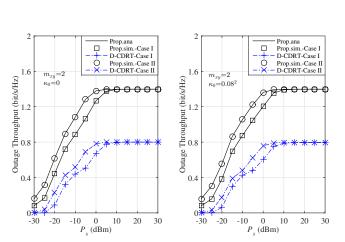


Fig. 8. Comparison of outage throughput between the proposed scheme and the conventional D-CDRT.

(b) Imperfect SIC

(a) Perfect SIC

target data rate for large P_s , both the proposed and conventional schemes have the ceilings of the outage throughput. The outage throughput for Case II is better than that for Case I in the low-medium transmit power region because the channel quality of Case II is better than that of Case I. However, for large P_s , the outage throughput of Case II is almost the same as that of Case I. This is because the error floor determines the outage throughput, and the error floor differences between Case I and Case II shown in both Fig. 4 and Fig. 5 are tiny for large P_s . Besides, the outage throughputs achieved by x_1' and x_{d_1} are much less than the other signals, and thus imperfect SIC has a limited impact on the outage throughput.

Fig. 9 plots the coverage of U_3 versus the transmit power of BS. Specifically, the coverage of U_3 is defined as the maximum coverage radius that U_2 can achieve when the outage-based quality-of-service constraint of U_3 is met. Here, we set $d_{s1}=50$ m, $d_{s2}=55$ m and $d_{21}=10$ m. The outage probability threshold is assumed to be 10^{-2} . Note that the distance d_{23} should satisfy 0 m $< d_{23} < 10$ m due to $d_{23} < d_{21}$. Fig. 9 shows that the proposed scheme can achieve larger coverage of U_3 than the conventional D-CDRT

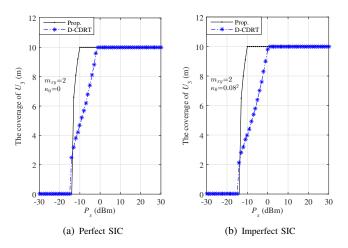


Fig. 9. The coverage of the CEU U_3 versus the transmit power of BS.

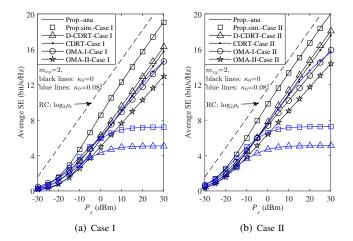


Fig. 10. Comparison of average SE among the proposed scheme, the conventional D-CDRT, CDRT, OMA-I, and OMA-II, and RC represents the reference curve.

scheme in the low-medium transmit power region, which is consistent with the results discussed in Fig. 3. Moreover, both the proposed scheme and the conventional D-CDRT scheme can attain the same maximum of the coverage of U_3 in the high transmit power region.

B. Average SE

Fig. 10 shows the relationship between the average SE and the transmit power of BS. To investigate the average SE difference between NOMA-based schemes (i.e., the proposed scheme, D-CDRT [34] and CDRT [38]) and OMA-based schemes, we design two benchmarks using time division multiple access (TDMA) (i.e., OMA-I and OMA-II) for fair comparisons. Specifically, OMA-I divides the whole transmission period into seven phases and adopts TDMA to transmit six signals of the proposed scheme. Similarly, OMA-II completes the transmission of four signals in the conventional scheme by using five phases. In Fig. 10, the theoretical analysis results of the average SE for the proposed scheme are perfectly matched with the corresponding simulation ones. The analysis of SE

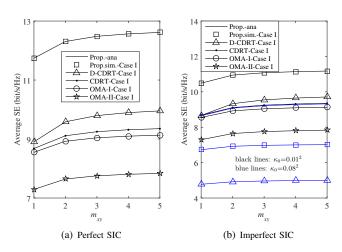


Fig. 11. Average SE versus the Nakagami-m line-of-sight parameter (i.e., m_{xy}), with $P_s=10$ dBm and the distance setting of Case I considered.

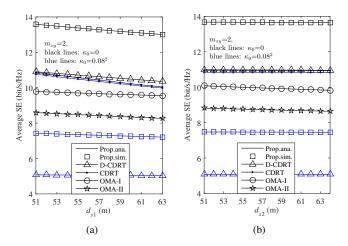


Fig. 12. (a) Average SE according to d_{s1} , with $m_{xy}=2$, $P_s=10$ dBm, $d_{s2}=65$ m, $d_{23}=5$ m, and $d_{21}=15$ m considered. (b) Average SE according to d_{s2} , with $m_{xy}=2$, $P_s=10$ dBm, $d_{s1}=50$ m, $d_{23}=5$ m, and $d_{21}=15$ m considered.

scaling in Theorem 3 is also verified. The proposed scheme realizes the aggregation transmission of multiple data streams and outperforms the conventional scheme in terms of average SE under both perfect and imperfect SIC. When perfect SIC is performed, the proposed scheme and the D-CDRT scheme can achieve better average SE compared with CDRT and OMA-based schemes. Instead, the opposite results can be observed in the high transmit power region for imperfect SIC. This is because imperfect SIC significantly affects the average SE of the proposed scheme and the D-CDRT scheme, resulting in the existence of SE ceiling for large P_s . Moreover, since Case II has better channel qualities than Case I, the achievable average SE in Case II is superior to that in Case I.

Fig. 11 plots the average SE versus the Nakagami-m line-of-sight parameter m_{xy} . From Fig. 11, we can observe that the proposed scheme can attain the best average SE performance compared with the other benchmarks under perfect SIC and imperfect SIC with a slight residual interference level. The average SE becomes better with the increase of m_{xy} because

larger m_{xy} represents better channel quality. However, the increase rate of the average SE becomes smaller when m_{xy} increases, especially under imperfect SIC. This is because the average SE is affected by the channel quality, power allocation coefficient and residual interference, and imperfect SIC becomes the main influencing factor when the channel quality is good enough and the power allocation coefficient setting is fixed.

Fig. 12 plots the average SE versus different d_{s1} and d_{s2} . Without loss of generality, we set 51 m $< d_{s1} <$ 63 m and 51 $m < d_{s2} < 63$ m in Fig. 12 (a) and Fig. 12 (b), respectively, which follows the construction rules of the triangle. In this figure, three observations can be drawn in the following. 1) The average SE achieved by all the schemes decreases as d_{s1} becomes large. This is because the increase of d_{s1} makes the channel quality of h_{s1} worse, resulting in the achievable SE reduction of x_1 and x'_1 for all the schemes. Meanwhile, the change of d_{s1} does not affect the achievable capacity of the other signals. 2) With the increase of d_{s2} , the average SE for NOMA-based schemes (i.e., the proposed scheme, D-CDRT and CDRT) remains almost constant under both perfect and imperfect SIC. This is because although large d_{s2} can slightly reduce the achievable capacity of x_2 because of the worse h_{s2} , the average SE contributed by x_2 is very limited compared with all the other signals. 3) For OMA-based schemes, the SE realized by x_2 is crucial for the overall average SE. Therefore, the average SE for OMA-I and OMA-II decreases significantly as d_{s2} increases due to the decrease of the achievable SE for x_2 caused by the increase of d_{s2} .

VI. CONCLUSION

We studied a D2MD assisted cooperative NOMA system, where two CCUs and one CEU are paired as a D2MD cluster, and the BS can directly communicate with two CCUs and connect with the CEU with the help of one CCU. To further improve the reliability of the CEU and the SE, we design an adaptive aggregate transmission scheme by adopting dynamic superposition coding, pre-designing the decoding orders, and prior information cancellation. Moreover, we evaluated the performance for the proposed scheme in terms of outage probability, diversity order, outage throughput, ergodic sum capacity, average SE, and SE scaling over Nakagami-m fading channels with both perfect and imperfect SIC. The correctness of the analytical results was validated through simulations. It is shown that the proposed scheme can achieve better outage performance of the CEU, outage throughput, and average SE under both perfect and imperfect SIC than the conventional D-CDRT scheme. When the level of residual interference is low, the proposed scheme can also attain superior SE than the OMA schemes. To further improve the achievable SE, we will investigate the related power allocation optimization problem and extend the proposed scheme to a multiple-input multipleoutput scenario in future work.

APPENDIX A PROOF OF THEOREM 1

In the second phase, U_1 can adopt SIC to decode x'_1 after decoding x_{d_1} . Based on the proposed scheme, the outage

probability for U_1 to decode x'_1 should be discussed in four cases (i.e., A = 0, 1, 2, 3) and given in (33).

If both U_1 and U_2 cannot decode x_3 successfully in the first phase (i.e., A=0), U_2 only transmits x_{d_1} and x_{d_3} via superposition coding in the second phase. Based on the proposed predetermined decoding order strategy, U_2 can use SIC to decode x_1' after removing x_{d_1} . In this case, we can use $\gamma_{1,x_3}^{t_1}$, $\gamma_{2,x_3}^{t_2}$, $\gamma_{1,x_{d_1}}^{t_2,0}$ and $\gamma_{1,x_1'}^{t_2,0}$ to calculate the non-outage probability for U_1 to decode x_1' as

$$\mathbb{P}_{1,0}^{t_{2},x'_{1}} = \Pr\left(\gamma_{1,x_{3}}^{t_{1}} < \varphi_{x_{3}}, \gamma_{2,x_{3}}^{t_{1}} < \varphi_{x_{3}}, \gamma_{1,x_{d_{1}}}^{t_{2},0} > \varphi_{x_{d_{1}}}, \gamma_{1,x'_{1}}^{t_{2},0} > \varphi_{x'_{1}}\right) \\
= \Pr\left(\xi_{1}^{0} < \lambda_{s_{1}} < \phi_{3}, \lambda_{s_{1}} \frac{\rho_{s} \phi_{7}^{0}}{\varphi_{x'_{1}}} - \phi_{7}^{0} > \lambda_{2_{1}} > \lambda_{s_{1}} \rho_{s} \phi_{5}^{0} + \phi_{5}^{0}\right) \\
\times F_{\lambda_{s_{2}}}(\phi_{3}), \tag{57}$$

where
$$\phi_3 = \frac{\varphi_{x_3}}{\rho_s \left(a_3 - (a_1 + a_2)\varphi_{x_3}\right)}$$
, $\phi_5^A = \frac{\varphi_{x_{d_1}}}{\alpha \rho_s (b_1^A - (b_2^A + \varpi^A b_3^A)\varphi_{x_{d_1}})}$, $\phi_7^A = \frac{1}{(\kappa_{1,1}^{t_2,A} b_1^A + b_2^A + \varpi^A b_3^A)\alpha \rho_s}$ and $\xi_1^A = \min\left\{\frac{\left(\phi_5^A + \phi_7^A\right)\varphi_{x_1'}}{\left(\phi_7^A - \varphi_{x_1'}\phi_5^A\right)\rho_s}, \phi_3\right\}$. The condition $\frac{\rho_s\phi_7^0}{\varphi_{x_1'}} - \phi_7^0 > \lambda_{s1}\rho_s\phi_5^0 + \phi_5^0$ should be satisfied, otherwise $\mathbb{P}_{1,0}^{t_2,x_1'}$ is always zero. Therefore, $\mathbb{P}_{1,0}^{t_2,x_1'}$ in (57) can be rewritten as

$$\mathbb{P}_{1,0}^{t_2,x_1'} = \int_{\xi_1^0}^{\phi_3} \int_{\rho_s \phi_5^0 x + \phi_5^0}^{\rho_s \phi_7^0 x / \varphi_{x_1'} - \phi_7^0} f_{\lambda_{s1}}(x) f_{\lambda_{21}}(y) dx dy
\times F_{\lambda_{s2}}(\phi_3) \delta\left(\phi_7^0 - \varphi_{x_1'} \phi_5^0\right),$$
(58)

where the PDF of the channel gain λ_{xy} is $f_{\lambda_{xy}}(z) = \left(\frac{zm_{xy}}{\Omega_{xy}}\right)^{m_{xy}} \frac{1}{\Gamma(m_{xy})} \exp\left(-\frac{zm_{xy}}{\Omega_{xy}}\right)$, and the step function $\delta(z)$ are zero and one for $z \leq 0$ and z > 0, respectively. Using (26) and some integral calculations, we can calculate $\mathbb{P}_{1,0}^{t_2,x_1'}$ as

$$\mathbb{P}_{1,0}^{t_{2},x_{1}'} = \left\{ \Delta_{j_{1}}^{0} \left(\mathcal{L}_{1} \left(\phi_{3}, j_{1} + m_{s1} - 1, \frac{m_{21}\phi_{5}^{0}\rho_{s}}{\Omega_{21}} + \frac{m_{s1}}{\Omega_{s1}} \right) - \mathcal{L}_{1} \left(\xi_{1}^{0}, j_{1} + m_{s1} - 1, \frac{m_{21}\phi_{5}^{0}\rho_{s}}{\Omega_{21}} + \frac{m_{s1}}{\Omega_{s1}} \right) \right) - \Delta_{j_{2}}^{0} \left(\mathcal{L}_{1} \left(\phi_{3}, j_{2} + m_{s1} - 1, \frac{m_{21}\rho_{s}\phi_{7}^{0}}{\Omega_{21}\varphi_{x_{1}'}} + \frac{m_{s1}}{\Omega_{s1}} \right) - \mathcal{L}_{1} \left(\xi_{1}^{0}, j_{2} + m_{s1} - 1, \frac{m_{21}\rho_{s}\phi_{7}^{0}}{\Omega_{21}\varphi_{x_{1}'}} + \frac{m_{s1}}{\Omega_{s1}} \right) \right) \right\} \times F_{\lambda_{s2}} \left(\phi_{3} \right) \delta \left(\phi_{7}^{0} - \varphi_{x_{1}'} \phi_{5}^{0} \right), \tag{59}$$

$$\begin{split} \text{where } & \Delta_{j_1}^A = \sum_{j=0}^{m_{21}-1} \sum_{j_1=0}^j \binom{j}{j_1} \Big(\frac{m_{21}\phi_5^A}{\varOmega_{21}} \Big)^j \frac{m_{s1}{m_{s1}} m_{s1}}{\varOmega_{s1} \Gamma(m_{s1})} / j! \\ & \times (\rho_s)^{j_1} \exp \Big(-\frac{m_{21}\phi_5^A}{\varOmega_{21}} \Big) \text{ and } \Delta_{j_2}^A = \sum_{j=0}^{m_{21}-1} \sum_{j_2=0}^j \binom{j}{j_2} / j! \\ & \times \Big(\frac{m_{21}\phi_7^A}{\varOmega_{21}} \Big)^j \Big(\frac{\rho_s}{\varphi_{x_1'}} \Big)^{j_2} (-1)^{j-j_2} \frac{m_{s1}^{m_{s1}}}{\varOmega_{s1} \Gamma(m_{s1})} \exp \Big(\frac{m_{21}\phi_7^A}{\varOmega_{21}} \Big). \end{split}$$

Similarly, if A=1, U_2 will broadcast the combination of x_3 , x_{d_1} and x_{d_3} in the second phase. Therefore, U_1 decodes x_{d_1} and x_1' sequentially by treating x_{d_3} and x_3 as noise. Based

on this, using $\gamma_{1,x_3}^{t_1}$, $\gamma_{2,x_3}^{t_1}$, $\gamma_{1,x_{d_1}}^{t_2,1}$ and $\gamma_{1,x_1'}^{t_2,1}$, we can write $\mathbb{P}_{1,1}^{t_2,x_1'}$ for A=1 as

$$\mathbb{P}_{1,1}^{t_{2},x'_{1}} = \Pr\left(\gamma_{1,x_{3}}^{t_{1}} < \varphi_{x_{3}}, \gamma_{2,x_{3}}^{t_{1}} > \varphi_{x_{3}}, \gamma_{1,x_{d_{1}}}^{t_{2},1} > \varphi_{x_{d_{1}}}, \gamma_{1,x'_{1}}^{t_{2},1} > \varphi_{x'_{1}}\right) \\
= \Pr\left(\xi_{1}^{1} < \lambda_{s_{1}} < \phi_{3}, \lambda_{s_{1}} \frac{\rho_{s}\phi_{7}^{1}}{\varphi_{x'_{1}}} - \phi_{7}^{1} > \lambda_{2_{1}} > \lambda_{s_{1}}\rho_{s}\phi_{5}^{1} + \phi_{5}^{1}\right) \\
\times \left(1 - F_{\lambda_{s_{2}}}(\phi_{3})\right) \delta(\phi_{7}^{1} - \varphi_{x'_{1}}\phi_{5}^{1}) \\
= \mathbb{P}_{1,0}^{t_{2},x'_{1}}\left(\xi_{1}^{0} \to \xi_{1}^{1}, \phi_{7}^{0} \to \phi_{7}^{1}, \phi_{5}^{0} \to \phi_{5}^{1}\right) \frac{\left(1 - F_{\lambda_{s_{2}}}(\phi_{3})\right)}{F_{\lambda_{s_{1}}}(\phi_{3})}. (60)$$

When A=2, U_1 can decode x_3 successfully while U_2 cannot decode x_3 in the first phase. Therefore, U_2 transmits the combination of x_{d_1} and x_{d_3} in the second phase. In this case, U_1 decodes x_{d_1} and x_1' sequentially by treating x_{d_3} as noise. Based on this, we can use $\gamma_{1,x_3}^{t_1}$, $\gamma_{2,x_3}^{t_1}$, $\gamma_{1,x_{d_1}}^{t_2,2}$ and $\gamma_{1,x_1'}^{t_2,2}$ to calculate the non-outage probability for U_1 to decode x_1' as

$$\mathbb{P}_{1,2}^{t_{2},x'_{1}} = \Pr\left(\gamma_{1,x_{3}}^{t_{1}} > \varphi_{x_{3}}, \gamma_{2,x_{3}}^{t_{1}} < \varphi_{x_{3}}, \gamma_{1,x_{d_{1}}}^{t_{2},2} > \varphi_{x_{d_{1}}}, \gamma_{1,x'_{1}}^{t_{2},2} > \varphi_{x'_{1}}\right) \\
= \Pr\left(\lambda_{s1} > \phi_{3}, \lambda_{s1} \frac{\rho_{s} \phi_{7}^{2}}{\varphi_{x'_{1}}} - \phi_{7}^{2} > \lambda_{21} > \lambda_{s1} \rho_{s} \phi_{5}^{2} + \phi_{5}^{2}\right) \\
\times F_{\lambda_{s2}}(\phi_{3}) \delta\left(\phi_{7}^{2} - \varphi_{x'_{1}}, \phi_{5}^{2}\right), \tag{61}$$

Similar to (58), we can use (31) and some integral calculations to rewrite (61) as

$$\mathbb{P}_{1,2}^{t_{2},x'_{1}} = \left\{ \Delta_{j_{1}}^{2} \mathcal{L}_{2} \left(\xi_{2}^{2}, m_{s1} + j_{1} - 1, \frac{m_{21} \rho_{s} \phi_{5}^{2}}{\Omega_{21}} + \frac{m_{s1}}{\Omega_{s1}} \right) - \Delta_{j_{2}}^{2} \mathcal{L}_{2} \left(\xi_{2}^{2}, m_{s1} + j_{2} - 1, \frac{m_{21} \rho_{s}}{\Omega_{21}} \frac{\phi_{7}^{2}}{\varphi_{x'_{1}}} + \frac{m_{s1}}{\Omega_{s1}} \right) \right\} \times F_{\lambda_{s2}} (\phi_{3}) \, \delta \left(\phi_{7}^{2} - \varphi_{x'_{1}} \phi_{5}^{2} \right), \tag{62}$$

where
$$\xi_2^A = \max\left\{\frac{(\phi_5^A + \phi_7^A)\varphi_{x_1'}}{(\phi_7^A - \varphi_{x_1'}\phi_5^A)\rho_s}, \phi_3\right\}$$
.

Similarly, U_1 can decode x_{d_1} and x_1' sequentially in the second phase by treating x_{d_3} as noise when both U_1 and U_2 can decode x_3 successfully (i.e., A=3) in the first phase. This is because U_1 can use the known signal of x_3 to remove the corresponding interference caused by x_3 . Following the same steps in (62), we can use $\gamma_{1,x_3}^{t_1}$, $\gamma_{2,x_3}^{t_1}$, $\gamma_{1,x_{d_1}}^{t_2,3}$ and $\gamma_{1,x_1'}^{t_2,3}$ to obtain $\mathbb{P}_{1,3}^{t_2,x_1'}$ as

$$\mathbb{P}_{1,3}^{t_{2},x_{1}'} = \Pr\left(\gamma_{1,x_{3}}^{t_{1}} > \varphi_{x_{3}}, \gamma_{2,x_{3}}^{t_{1}} > \varphi_{x_{3}}, \gamma_{1,x_{d_{1}}}^{t_{2},3} > \varphi_{x_{d_{1}}}, \gamma_{1,x_{1}'}^{t_{2},3} > \varphi_{x_{1}'}\right) \\
= \Pr\left(\xi_{1}^{1} < \lambda_{s_{1}} > \phi_{3}, \lambda_{s_{1}} \frac{\rho_{s} \phi_{7}^{3}}{\varphi_{x_{1}'}} - \phi_{7}^{3} > \lambda_{2_{1}} > \lambda_{s_{1}} \rho_{s} \phi_{5}^{3} + \phi_{5}^{3}\right) \\
\times \left(1 - F_{\lambda_{s_{2}}}(\phi_{3})\right) \delta(\phi_{7}^{3} - \varphi_{x_{1}'}\phi_{5}^{3}) \\
= \mathbb{P}_{1,2}^{t_{2},x_{1}'}\left(\xi_{2}^{2} \to \xi_{2}^{3}, \phi_{5}^{2} \to \phi_{5}^{3}, \phi_{7}^{2} \to \phi_{7}^{3}\right) \frac{\left(1 - F_{\lambda_{s_{2}}}(\phi_{3})\right)}{F_{\lambda_{s_{2}}}(\phi_{3})}. (63)$$

Substituting (59), (60), (62) and (63) into (33), we obtain $P_{1,\text{out}}^{t_2,x_1'}$.

The analytical results in Theorem 1 can be used to minimize the outage probability for U_1 to decode x'_1 by formulating the optimization problem and designing the power allocation coefficient.

APPENDIX B PROOF OF THEOREM 2

When the variable z satisfies $z \to 0$, we can obtain the approximation of $\exp(-z) \to 1-z$ by using the Maclaurin series [36]. Based on this, the CDF function in (20) with $z \to 0$ can be approximated as

$$F_{\lambda_{xy}}(z) = \frac{1}{m_{xy}!} \left(\frac{zm_{xy}}{\Omega_{xy}}\right)^{m_{xy}}.$$
 (64)

Using (19), (21), (22), (25), (33), (36) and (64), we can respectively approximate $P_{1,\text{out}}^{t_1,x_1}$, $P_{2,\text{out}}^{t_1,x_2}$, $P_{3,\text{out}}^{t_2,x_3}$, $P_{1,\text{out}}^{t_2,x_{d_1}}$, $P_{1,\text{out}}^{t_2,x_{d_1}}$ and $P_{3,\text{out}}^{t_2,x_{d_3}}$ for high SNR region (i.e., $\rho_s \to \infty$) as

$$P_{1,\text{out}}^{t_1,x_1} \approx \frac{1}{m_{s1}!} \left(\frac{m_{s1}\tilde{\phi}_1}{\Omega_{s1}}\right)^{m_{s1}},$$
 (65)

$$P_{2,\text{out}}^{t_1,x_2} \approx \frac{1}{m_{s2}!} \left(\frac{m_{s2}\tilde{\phi}_2}{\Omega_{s2}}\right)^{m_{s2}},$$
 (66)

$$P_{3,\text{out}}^{t_2,x_3} \approx \frac{1}{m_{s2}!} \left(\frac{\phi_3 m_{s2}}{\Omega_{s2}}\right)^{m_{s2}} + \frac{1}{m_{23}!} \left(\frac{\tilde{\phi}_3^3 m_{23}}{\Omega_{23}}\right)^{m_{23}}, \quad (67)$$

$$P_{1,\text{out}}^{t_{2},x_{d_{1}}} \approx 1 - \frac{m_{s1}^{m_{s1}}}{\Omega_{s1}^{m_{s1}}\Gamma(m_{s1})} \sum_{i=0}^{m_{21}-1} \left(\frac{m_{21}\rho_{s}\phi_{5}^{3}}{\Omega_{21}}\right)^{i} \times \frac{(m_{s1}+i-1)!}{i!} \left(\frac{m_{s1}}{\Omega_{s1}} + \frac{m_{21}\rho_{s}\phi_{5}^{3}}{\Omega_{21}}\right)^{-m_{s1}-i}, \quad (68)$$

$$P_{1,\text{out}}^{t_{2},x_{1}'} \approx 1 - \frac{m_{s1}^{m_{s1}}}{\Omega_{s1}^{m_{s1}}\Gamma(m_{s1})} \sum_{i=0}^{m_{21}-1} \frac{(m_{s1}+i-1)!}{i!} \times \left(\frac{m_{21}\rho_{s}}{\Omega_{21}}\right)^{i} \left\{ \left(\phi_{5}^{3}\right)^{i} \left(\frac{m_{s1}}{\Omega_{s1}} + \frac{m_{21}\rho_{s}\phi_{5}^{3}}{\Omega_{21}}\right)^{-m_{s1}-i} - \left(\frac{\phi_{7}^{3}}{\varphi_{x'}}\right)^{i} \left(\frac{m_{s1}}{\Omega_{s1}} + \frac{m_{21}\rho_{s}\phi_{7}^{3}}{\Omega_{21}\varphi_{x'}}\right)^{-m_{s1}-i} \right\}, \quad (69)$$

$$P_{3,\text{out}}^{t_2,x_{d_3}} \approx 1 + \zeta_1 \zeta_3 \left(\left(\tilde{\phi}_5^3 \right)^{m_{23}} - \left(\tilde{\phi}_5^1 \right)^{m_{23}} \right)$$

$$+ \zeta_2 \zeta_3 \left(\left(\tilde{\phi}_5^3 \right)^{m_{23}} - \left(\tilde{\phi}_4^2 \right)^{m_{23}} \right) - \zeta_3 \left(\tilde{\phi}_5^3 \right)^{m_{23}}$$

$$+ \zeta_1 \zeta_2 \zeta_3 \left(\left(\tilde{\phi}_5^1 \right)^{m_{23}} + \left(\tilde{\phi}_4^2 \right)^{m_{23}} - \left(\tilde{\phi}_4^0 \right)^{m_{23}}$$

$$- \left(\tilde{\phi}_5^3 \right)^{m_{23}} \right), \tag{70}$$

where
$$\zeta_1 = \left(\frac{\phi_3 m_{s1}}{\Omega_{s1}}\right)^{m_{s1}}/m_{s1}!$$
, $\zeta_2 = \left(\frac{\phi_3 m_{s2}}{\Omega_{s2}}\right)^{m_{s2}}/m_{s2}!$ and $\zeta_3 = \left(\frac{m_{23}}{\Omega_{23}}\right)^{m_{23}}/m_{23}!$.

The diversity order corresponding to the outage probability $P_{\rm out}$ can be defined as

$$\mathcal{D}(P_{\text{out}}) = -\lim_{\rho_s \to \infty} \frac{\log P_{\text{out}}}{\log \rho_s}.$$
 (71)

Therefore, substituting (65)-(70) into (71), we have
$$\mathcal{D}\left(P_{1,\mathrm{out}}^{t_1,x_1}\right) = \mathcal{D}\left(P_{2,\mathrm{out}}^{t_1,x_2}\right) = \mathcal{D}\left(P_{3,\mathrm{out}}^{t_2,x_3}\right) = \mathcal{D}\left(P_{3,\mathrm{out}}^{t_2,x_3}\right) = 1$$
 and $\mathcal{D}\left(P_{1,\mathrm{out}}^{t_2,x_1'}\right) = \mathcal{D}\left(P_{1,\mathrm{out}}^{t_2,x_{d_1}}\right) = 0$. The analytical results verify that the data streams x_1' and

The analytical results verify that the data streams x_1' and x_{d_1} achieve the diversity order of zero due to the interchannel interference. However, the data streams x_1 , x_2 , x_3 , and x_{d_3} will not suffer from the inter-channel interference, and thus they can achieve the diversity order of one. In practical applications, the power allocation coefficients related to data streams x_1 , x_2 , x_3 , and x_{d_3} should be reasonably designed to avoid the waste of power resources while ensuring the outage performance, because the outage probabilities corresponding to these data streams have error floors when the transmit SNR becomes large.

APPENDIX C PROOF OF THEOREM 3

The following approximations, i.e., $\exp(-z) \approx 1-z$ and $\operatorname{Ei}(x) \approx E^* + z + \ln(-z)$ always hold for $z \to 0$, where E^* denotes the Euler constant [36]. When the proposed scheme performs perfect SIC, applying the above approximations to (46) and (55), we can obtain $\bar{C}_{x_1} \sim \frac{1}{2} \log_2 \rho_s$ and $\bar{C}_{x_{d_3}}^3 \sim \frac{1}{2} \log_2 \rho_s$ in the high transmit SNR region. Due to the SC characteristics of NOMA, the ergodic capacities for the other signals are interference limited, and they gradually become constant with the increase of ρ_s . Specifically, if $\rho_s \to \infty$, we can use (14), (16), (17) and (18) to obtain the following approximations

$$C_{x_1'}^3 \approx \mathbb{E}\left\{\frac{1}{2}\log_2\left(1 + \frac{\lambda_{s1}}{\lambda_{21}b_2^A\alpha}\right)\right\},$$
 (72a)

$$\bar{C}_{x_2} \approx \frac{1}{2} \log_2 \left(1 + \frac{a_2}{a_1} \right),\tag{72b}$$

$$C_{x_{d_1}}^3 \approx \mathbb{E} \left\{ \frac{1}{2} \log_2 \left(1 + \min \left\{ \frac{\lambda_{21} b_1^3 \alpha}{\lambda_{s1} + \lambda_{21} b_2^3 \alpha}, \frac{b_1^3}{b_2^3 + b_3^3} \right\} \right) \right\}, \tag{72c}$$

$$\bar{C}_{x_3}^3 \approx \frac{1}{2} \log_2 \left(1 + \min \left\{ \frac{a_3}{a_1 + a_2}, \frac{b_3^3}{b_2^3} \right\} \right).$$
 (72d)

Based on the above analysis and (42), the SE scaling of the proposed scheme with perfect SIC is $\log_2 \rho_s$.

Moreover, imperfect SIC causes the residual interference, and thus the ergodic capacity approximations of the proposed scheme for $\rho_s \to \infty$ can be written as

$$\bar{C}_{x_1} \approx \frac{1}{2} \log_2 \left(1 + \frac{a_1}{\kappa_{12}^{t_1} a_2 + \kappa_{13}^{t_1} a_3} \right),$$
(73a)

$$\bar{C}_{x_2} \approx \frac{1}{2} \log_2 \left(1 + \frac{a_2}{a_1 + \kappa_{11}^{t_1} a_3} \right),$$
 (73b)

$$\bar{C}_{x_3}^3 \approx \frac{1}{2} \log_2 \left(1 + \min \left\{ \frac{a_3}{(a_1 + a_2)}, \frac{b_3^3}{(\kappa_{3,1}^{t_2,3} b_1^3 + b_2^3)} \right\} \right),$$
 (73c)

$$C_{x_1'}^3 \approx \mathbb{E}\left\{\frac{1}{2}\log_2\left(1 + \frac{\lambda_{s1}}{\lambda_{21}\left(\kappa_{1,1}^{t_2,A}b_1^A + b_2^A + \varpi^Ab_3^A\right)\alpha}\right)\right\}, (73d)$$

$$C_{x_{d_1}}^3 \approx \mathbb{E} \left\{ \frac{1}{2} \log_2 \left(1 + \min \left\{ \frac{\lambda_{21} b_1^3 \alpha}{\lambda_{s_1} + \lambda_{21} b_2^3 \alpha}, \frac{b_1^3}{b_2^3 + b_3^3} \right\} \right) \right\}, (73e)$$

$$C_{x_{d_3}}^3 \approx \frac{1}{2} \log_2 \left(1 + \frac{b_2^3}{(\kappa_{2,2}^{t_2,3}b_1^3 + \kappa_{2,2}^{t_2,3}b_2^3)} \right).$$
 (73f)

Combining (42) and (73), we obtain that the SE scaling becomes zero when the proposed scheme performs imperfect SIC.

Based on the above discussions, the corresponding rationale can be summarized as follows. When perfect SIC is performed, only x_1 and x_{d_3} are not affected by the inter-user interference or the inter-channel interference. Therefore, the growth rate of \bar{C}_{x_1} and $\bar{C}_{x_{d_3}}^3$ with the increase of ρ_s is $\frac{1}{2} \log_2 \rho_s$ in the high SNR region, while the ergodic capacities for the other signals are almost constant. Conversely, if imperfect SIC is performed, the transmissions of all the signals are affected by interference such as inter-user interference, inter-channel interference, and residual interference. Therefore, the SE scaling becomes zero. The analytical results in Theorem 3 can provide theoretical support for effectively improving the SE under high SNR condition.

REFERENCES

- W. Ahsan, W. Yi, Z. Qin, Y. Liu and A. Nallanathan, "Resource allocation in uplink NOMA-IoT networks: A reinforcement-learning approach," *IEEE Trans. Commun.*, early access, Mar. 18, 2021, doi: 10.1109/TWC.2021.3065523.
- [2] S. K. Sharma and X. Wang, "Toward massive machine type communications in ultra-dense cellular IoT networks: Current issues and machine learning-assisted solutions," *IEEE Commun. Surveys Tuts.*, vol. 22, no. 1, pp. 426–471, 1st Quart., 2020.
- [3] Z. Ding, X. Lei, G. K. Karagiannidis, R. Schober, J. Yuan, and V. Bhargava, "A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends," *IEEE J. Sel. Areas Commun.*, vol. 35, no. 10, pp. 2181–2195, Oct. 2017.
- [4] L. Dai, B. Wang, Z. Ding, Z. Wang, S. Chen, and L. Hanzo, "A survey of non-orthogonal multiple access for 5G," *IEEE Commun. Surveys Tuts.*, vol. 20, no. 3, pp. 2294–2323, 3rd Quart., 2018.
- [5] Y. Liu, Z. Qin, M. Elkashlan, Z. Ding, A. Nallanathan, and L. Hanzo, "Nonorthogonal multiple access for 5G and beyond," *Proc. IEEE*, vol. 105, no. 12, pp. 2347–2381, Dec. 2017.
- [6] N. Zhao, W. Wang, J. Wang, Y. Chen, Y. Lin, Z. Ding, and N. C. Beaulieu, "Joint beamforming and jamming optimization for secure transmission in MISO-NOMA networks," *IEEE Trans. Commun.*, vol. 67, no. 3, pp. 2294–2305, Mar. 2019.
- [7] Z. Ding, F. Adachi, and H. V. Poor, "The application of MIMO to non-orthogonal multiple access," *IEEE Trans. Wireless Commun.*, vol. 15, no. 1, pp. 537–552, Jan. 2016.
- [8] Y. Xu, J. Cheng, G. Wang and V. C. M. Leung, "Adaptive coordinated direct and relay transmission for NOMA networks: A joint downlinkuplink scheme," *IEEE Trans. Wireless Commun.*, vol. 20, no. 7, pp. 4328-4346, Jul. 2021.
- [9] J. Zhao, Y. Liu, K. K. Chai, Y. Chen, and M. Elkashlan, "Joint subchannel and power allocation for NOMA enhanced D2D communications," *IEEE Trans. Commun.*, vol. 65, no. 11, pp. 5081–5094, Nov. 2017.
- [10] L. Pei, Z. Yang, C. Pan, W. Huang, M. Chen, M. Elkashlan, and A. Nallanathan, "Energy-efficient D2D communications underlaying NOMA-based networks with energy harvesting," *IEEE Commun. Lett.*, vol. 22, no. 5, pp. 914–917, May 2018.
- [11] Y. Pan, C. Pan, Z. Yang, and M. Chen, "Resource allocation for D2D communications underlaying a NOMA-based cellular network," *IEEE Wireless Commun. Lett.*, vol. 7, no. 1, pp. 130–133, Feb. 2018.
- [12] H. Zheng, S. Hou, H. Li, Z. Song, and Y. Hao, "Power allocation and user clustering for uplink MC-NOMA in D2D underlaid cellular networks," *IEEE Wireless Commun. Lett.*, vol. 7, no. 6, pp. 1030–1033, Dec. 2018.
- [13] Y. Dai, M. Sheng, J. Liu, N. Cheng, X. Shen, and Q. Yang, "Joint mode selection and resource allocation for D2D-enabled NOMA cellular networks," *IEEE Trans. Veh. Technol.*, vol. 68, no. 7, pp. 6721–6733, Jul. 2019.
- [14] R. Li, P. Hong, K. Xue, M. Zhang and T. Yang, "Resource allocation for uplink NOMA-based D2D communication in energy harvesting scenario: A two-stage game approach," *IEEE Trans. Wireless Commun.*, early access, Aug. 2021, doi: 10.1109/TWC.2021.3100567.

- [15] M. Sun, X. Xu, X. Tao, P. Zhang and V. C. M. Leung, "NOMA-based D2D-enabled traffic offloading for 5G and beyond networks employing licensed and unlicensed access," *IEEE Trans. Wireless Commun.*, vol. 19, no. 6, pp. 4109-4124, Jun. 2020.
- [16] Z. Ding, M. Peng, and H. V. Poor, "Cooperative non-orthogonal multiple access in 5G systems," *IEEE Commun. Lett.*, vol. 19, no. 8, pp. 1462–1465, Aug. 2015.
- [17] Z. Ding, H. Dai, and H. V. Poor, "Relay selection for cooperative NOMA," *IEEE Wireless Commun. Lett.*, vol. 5, no. 4, pp. 416–419, Aug. 2016.
- [18] Y. Liu, Z. Ding, M. Elkashlan, and H. V. Poor, "Cooperative nonorthogonal multiple access with simultaneous wireless information and power transfer," *IEEE J. Sel. Areas Commun.*, vol. 34, no. 4, pp. 938–953, Apr. 2016.
- [19] L. Lv, J. Chen, Q. Ni, and Z. Ding, "Design of cooperative non-orthogonal multicast cognitive multiple access for 5G systems: User scheduling and performance analysis," *IEEE Trans. Commun.*, vol. 65, no. 6, pp. 2641–2656, Jun. 2017.
- [20] Y. Cao, N. Zhao, G. Pan, Y. Chen, L. Fan, M. Jin, and M.-S. Alouini, "Secrecy analysis for cooperative NOMA networks with multiantenna full-duplex relay," *IEEE Trans. Commun.*, vol. 67, no. 8, pp. 5574–5587, Aug. 2019.
- [21] C. Zhong and Z. Zhang, "Non-orthogonal multiple access with cooperative full-duplex relaying," *IEEE Commun. Lett.*, vol. 20, no. 12, pp. 2478–2481, Dec. 2016.
- [22] Q. Si, M. Jin, T. A. Tsiftsis, N. Zhao and X. Wang, "Cooperative SM-based NOMA scheme with SWIPT," *IEEE Trans. Veh. Technol.*, vol. 70, no. 6, pp. 6195-6199, Jun. 2021.
- [23] Y. Xu, C. Shen, Z. Ding, X. Sun, S. Yan, G. Zhu, and Z. Zhong, "Joint beamforming and power-splitting control in downlink cooperative SWIPT NOMA systems," *IEEE Trans. Signal Process.*, vol. 65, no. 18, pp. 4874–4886, Sep. 2017.
- [24] L. Qian, Y. Wu, J. Ouyang, Z. Shi, B. Lin, and W. Jia, "Latency optimization for cellular assisted mobile edge computing via non-orthogonal multiple access," *IEEE Trans. Veh. Technol.*, vol. 69, no. 5, pp. 5494–5507, May 2020.
- [25] J. Bae and Y. Han, "Joint power and time allocation for two-way cooperative NOMA," *IEEE Trans. Veh. Technol.*, vol. 68, no. 12, pp. 12443–12447, Dec. 2019.
- [26] Y. Yuan, Y. Xu, Z. Yang, P. Xu, and Z. Ding, "Energy efficiency optimization in full-duplex user-aided cooperative SWIPT NOMA systems," IEEE Trans. Commun., vol. 67, no. 8, pp. 5753–5767, Aug. 2019.
- [27] F. Zhou, Z. Chu, H. Sun, R. Q. Hu, and L. Hanzo, "Artificial noise aided secure cognitive beamforming for cooperative MISO-NOMA using SWIPT," *IEEE J. Sel. Areas Commun.*, vol. 36, no. 4, pp. 918–931, Apr. 2018.
- [28] Y. Wu, L. Qian, H. Mao, X. Yang, H. Zhou, and X. Shen, "Optimal power allocation and scheduling for non-orthogonal multiple access relay-assisted networks" *IEEE Trans. Mobile Comput.*, vol. 17, no. 11, pp. 2591–2606, Nov. 2018.
- [29] Z. Zhang, Z. Ma, M. Xiao, Z. Ding, and P. Fan, "Full-duplex device-to device-aided cooperative nonorthogonal multiple access," *IEEE Trans. Veh. Technol.*, vol. 66, no. 5, pp. 4467–4471, May 2017.
- [30] J.-B. Kim, I.-H. Lee, and J. Lee, "Capacity scaling for D2D aided cooperative relaying systems using NOMA," *IEEE Wireless Commun. Lett.*, vol. 7, no. 1, pp. 42–45, Feb. 2018.
- [31] Y. Xu, G. Wang, B. Li, and S. Jia, "Performance of D2D aided uplink coordinated direct and relay transmission using NOMA," *IEEE Access*, vol. 7, pp. 151090–151102, Oct. 2019.
- [32] R. Li, P. Hong, K. Xue and T. Yang, "A cooperative D2D content sharing scheme using NOMA under social ties," *IEEE Commun. Lett.*, early access, Jul. 2021, doi: 10.1109/LCOMM.2021.3097762.
- [33] M. F. Kader, S. M. R. Islam and O. A. Dobre, "Simultaneous cellular and D2D communications exploiting cooperative uplink NOMA," *IEEE Commun. Lett.*, vol. 25, no. 6, pp. 1848-1852, Jun. 2021.
- [34] L. Zou, J. Chen, L. Lv, and B. He, "Capacity enhancement of D2D aided coordinated direct and relay transmission using NOMA," *IEEE Commun. Lett.*, vol. 24, no. 10, pp. 2128–2132, Oct. 2020.
- [35] P. Mach, Z. Becvar, and T. Vanek, "In-band device-to-device communication in OFDMA cellular networks: A survey and challenges," *IEEE Commun. Surveys Tuts.*, vol. 17, no. 4, pp. 1885–1922, 4th Quart., 2015.
- [36] Y. Xu, J. Cheng, G. Wang and V. C. M. Leung, "Coordinated direct and relay transmission for multiuser networks: NOMA or hybrid multiple access?," *IEEE Wireless Commun. Lett.*, vol. 10, no. 5, pp. 976-980, May 2021.

- [37] L. Lv, H. Jiang, Z. Ding, L. Yang, and J. Chen, "Secrecy-enhancing design for cooperative downlink and uplink NOMA with an untrusted relay," *IEEE Trans. Commun.*, vol. 68, no. 3, pp. 1698-1715, Mar. 2020.
- [38] J. Kim and I. Lee, "Non-orthogonal multiple access in coordinated direct and relay transmission," *IEEE Commun. Lett.*, vol. 19, no. 11, pp. 2037–2040, Nov. 2015.
- [39] I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products, 7th ed. New York, NY, USA: Academic, 2007.
- [40] Benedetto and E. Biglieri, Principles of Digital Transmission: With Wireless Applications. New York, NY, USA: Kluwer, 1999.
- [41] X. Chen, R. Jia, and D. W. K. Ng, "On the design of massive non-orthogonal multiple access with imperfect successive interference cancellation," *IEEE Trans. Commun.*, vol. 67, no. 3, pp. 2539–2551, Mar. 2019.

Yao Xu received the B.S. degree in communication engineering from the Harbin Institute of Technology, China, in 2016, where he is currently pursuing the Ph.D. degree in information and communication engineering. From 2019 to 2020, he was a Visiting Student with the Department of Electrical and Computer Engineering, the University of British Columbia, Vancouver, BC, Canada. His research interests include non-orthogonal multiple access, cooperative energy-harvesting networks, and cooperative full-duplex networks.

Jie Tang (Senior Member, IEEE) received the B.Eng. degree in information engineering from the South China University of Technology, Guangzhou, China, in 2008, the M.Sc. degree (Hons.) in communication systems and signal processing from the University of Bristol, U.K., in 2009, and the Ph.D. degree from Loughborough University, Leicestershire, U.K., in 2012.

From 2003 to 2015, he was a Research Associate with the School of Electrical and Electronic Engineering, The University of Manchester, U.K. He is

currently a Full Professor with the School of Electronic and Information Engineering, South China University of Technology, China. His current research centers around 5G and beyond mobile communications, including topics, such as massive MIMO, full-duplex communications, edge caching and fog networking, physical layer security, wireless power transfer, and mobile computing. He is a Senior Member of CIE and CIC. He was a corecipient of the 2018 IEEE ICNC, 2018 CSPS, and 2019 IEEE WCSP Best Paper Award. He also served as the Track Co-Chair for IEEE VTC-Spring 2018, EAI GreeNets 2019, ICCC Workshop 2019, and ICCC 2020. He is serving as an Editor for IEEE WIRELESS COMMUNICATIONS LETTERS, IEEE ACCESS, and EURASIP Journal on Wireless Communications and Networking.

Bo Li (Member, IEEE) received the B.S. degree in communication engineering and the M.S. and Ph.D. degrees in information and communication engineering from the Harbin Institute of Technology, China, in 2007, 2009, and 2013, respectively. He was a Visiting Ph.D. Student with the School of EEE, Nanyang Technological University, Singapore, from 2012 to 2013. Since 2013, he has been an Associate Professor with the School of Information Science and Engineering, Harbin Institute of Technology. His research interests include physical layer network

coding, mobile ad hoc networks, and adaptive modulation and coding.

Nan Zhao (Senior Member, IEEE) received the B.S. degree in electronics and information engineering, the M.E. degree in signal and information processing, and the Ph.D. degree in information and communication engineering from the Harbin Institute of Technology, Harbin, China, in 2005, 2007, and 2011, respectively. He is currently a Professor with the School of Information and Communication Engineering, Dalian University of Technology, Dalian, China, where he did a post-doctoral research from 2011 to 2013. He has published more than

90 articles in refereed journals and more than 90 papers in refereed international conferences. His recent research interests include interference alignment, cognitive radio, wireless power transfer, optical communications, and indoor localization. He is a Senior Member of the Chinese Institute of Electronics. In addition, he served as a Technical Program Committee (TPC) Member for many interferences, including Globecom, VTC, and WCSP. He serves as an Editor for IEEE WIRELESS COMMUNICATIONS LETTERS, IEEE ACCESS, Wireless Networks, the Physical Communication, the AEU-International Journal of Electronics and Communications, the Ad Hoc & Sensor Wireless Networks, and the KSII Transactions on Internet and Information Systems.

Dusit Niyato (Fellow, IEEE) received the B.E. degree from King Mongkut's Institute of Technology Ladkrabang (KMITL), Thailand, in 1999, and the Ph.D. degree in electrical and computer engineering from the University of Manitoba, Canada, in 2008. He is currently a Professor with the School of Computer Science and Engineering, Nanyang Technological University, Singapore. His research interests are in the areas of the Internet of Things (IoT), machine learning, and incentive mechanism design.

Kai-Kit Wong (Fellow, IEEE) received the B.Eng., M.Phil., and Ph.D. degrees in electrical and electronic engineering from The Hong Kong University of Science and Technology, Hong Kong, in 1996, 1998, and 2001, respectively. After graduation, he took up academic and research positions at The University of Hong Kong; Lucent Technologies; Bell-Labs, Holmdel; the Smart Antennas Research Group, Stanford University; and the University of Hull, U.K. He is currently the Chair of wireless communications with the Department of Electronic and

Electrical Engineering, University College London, U.K. His current research interests include around 5G and beyond mobile communications, including topics such as massive MIMO, full-duplex communications, millimetre-wave communications, edge caching and fog networking, physical layer security, wireless power transfer and mobile computing, V2X communications, and of course cognitive radios. His few other unconventional research topics that he has set his heart on, including for example, fluid antenna communications systems, and team optimization. Dr. Wong is a fellow of IET. He was a corecipient of the 2013 IEEE Signal Processing Letters Best Paper Award and the 2000 IEEE VTS Japan Chapter Award at the IEEE Vehicular Technology Conference in Japan, in 2000, and a few other international best paper awards. He is also on the editorial board of several international journals. He has been serving as a Senior Editor for IEEE COMMUNICATIONS LETTERS since 2012 and IEEE WIRELESS COMMUNICATIONS LETTERS since 2016. He is also an Area Editor of IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS. He had also previously served as an Associate Editor for IEEE SIGNAL PROCESSING LETTERS from 2009 to 2012 and an Editor for IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS from 2005 to 2011. He was also a Guest Editor of IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS Special Issue on Virtual MIMO in 2013. He is currently a Guest Editor of IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS Special Issue on Physical Layer Security for 5G.